Suppr超能文献

安吉白茶鲜叶的识别:融合渐近特征金字塔网络的S-YOLOv10-ASI算法

Identification of fresh leaves of Anji White Tea: S-YOLOv10-ASI algorithm fusing asymptotic feature pyra-mid network.

作者信息

Yang Chunhua, Yuan Wenxia, Zhao Qiang, Wang Zejun, Song Bowu, Dong Xianqiu, Xiao Yuandong, Zhang Shihao, Wang Baijuan

机构信息

College of Mechanical and Electrical Engineering, Wuhan Donghu College, Wuhan, China.

College of Tea Science, Yunnan Agricultural University, Kunming, China.

出版信息

PLoS One. 2025 Jul 2;20(7):e0325527. doi: 10.1371/journal.pone.0325527. eCollection 2025.

Abstract

This study proposes the S-YOLOv10-ASI algorithm to improve the accuracy of tea identification and harvesting by robots, integrating a slice-assisted super-reasoning technique. The algorithm improves the partial structure of the YOLOv10 network through space-to-depth convolution. The Progressive Feature Pyramid Network minimizes information loss during multi-stage transmission, enhances the saliency of key layers, resolves conflicts between objects, and improves the fusion of non-adjacent layers. Intersection over Union (IoU) is used to optimize the loss function calculation. The slice-assisted super-reasoning algorithm is integrated to improve the recognition ability of YOLOv10 network for long-distance and small-target tea. The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. Additionally, Distribution Focal Loss reduces by approximately 10%. Furthermore, Precision, Recall, and mAP have all increased by 7.1%, 6.69%, and 6.78% respectively. Moreover, the AP values for single bud, one bud and one leaf, and one bud and two leaves have seen improvements of 6.10%, 7.99%, and 8.28% respectively. The improved model effectively addresses challenges such as long-distance detection, small targets, and low resolution. It also offers high precision and recall, laying the foundation for the development of an Anji White Tea picking robot.

摘要

本研究提出了S-YOLOv10-ASI算法,通过集成切片辅助超推理技术来提高机器人对茶叶识别和采摘的准确性。该算法通过空间到深度卷积改进了YOLOv10网络的部分结构。渐进特征金字塔网络最大限度地减少了多阶段传输过程中的信息损失,增强了关键层的显著性,解决了物体之间的冲突,并改善了非相邻层的融合。使用交并比(IoU)来优化损失函数计算。集成了切片辅助超推理算法,以提高YOLOv10网络对远距离和小目标茶叶的识别能力。实验结果表明,与YOLOv10相比,S-YOLOv10-ASI在各项指标上均有显著提升。具体而言,训练集中的边界框回归损失降低了30%以上,而验证集中的分类损失和边界框回归损失下降了60%以上。此外,分布焦点损失减少了约10%。此外,精度、召回率和平均精度均值分别提高了7.1%、6.69%和6.78%。而且,单芽、一芽一叶和一芽二叶的平均精度值分别提高了6.10%、7.99%和8.28%。改进后的模型有效应对了远距离检测、小目标和低分辨率等挑战。它还具有高精度和召回率,为安吉白茶采摘机器人的开发奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e20a/12221049/3200f3770452/pone.0325527.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验