Kato Kohji, Nishio Yosuke, McMillan Kirsty J, Al-Maraghi Aljazi, Kroes Hester Y, Abdel-Hamid Mohamed S, Jones Emma, Shaw Shrestha, Yoshida Aya, Otsuji Shiomi, Murofushi Yuka, Aamer Waleed, Bhat Ajaz A, AlRayahi Jehan, Al-Shabeeb Akil Ammira S, Aliyev Elbay, van Binsbergen Ellen, Janssen Etienne J, Mehrin Kazi Mahnaz, Oishi Hisashi, Kobayashi Ryosuke, Horii Takuro, Hatada Izuho, Saito Akihiko, Hattori Mitsuharu, Kawano Yoshihiko, Lewis Philip A, Heesom Kate J, Takarada Takeshi, Sawamoto Kazunobu, Matsushita Masaki, Ogi Tomoo, Butkovic Rebeka, Danson Chris, Wilkinson Kevin A, Fakhro Khalid A, Zaki Maha S, Saitoh Shinji, Cullen Peter J
School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK.
Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, 467-8601, Japan.
Sci Transl Med. 2025 Jul 2;17(805):eadt2426. doi: 10.1126/scitranslmed.adt2426.
Ritscher-Schinzel syndrome (RSS) is a congenital malformation syndrome characterized by cerebellar, cardiac, and craniofacial malformations and phenotypes associated with liver, skeletal, and kidney dysfunction. The genetic cause of RSS remains to be fully defined, and limited information is available regarding the root cause of the multiple tissue phenotypes. Causative mutations in the Commander multiprotein assembly are an emerging feature of this syndrome. Commander organizes the sorting nexin-17 (SNX17)-dependent recycling of hundreds of integral membrane proteins through the endosomal network. Here, we identify previously unrecognized cohorts of patients with RSS that we genetically and clinically analyzed to identify causative genes in the copper metabolic murr1 domain-containing (COMMD) proteins COMMD4, COMMD9, and coiled-coil domain containing 93 (CCDC93) subunits of the Commander complex. Using interactome analysis, we determined that these mutations disrupted Commander assembly and, through cell surface proteomics, that this reduces tissue-specific presentation of cell surface integral membrane proteins essential for kidney, bone, and brain development. We established that these integral proteins contained ΦxNPxY/F or ΦxNxxY/F sorting motifs in their cytoplasmic-facing domains (where Φ is a hydrophobic residue and x is any residue) that are recognized by SNX17 to drive their Commander-dependent endosomal recycling. Last, through generation of mouse models of RSS, we show replication of RSS-associated clinical phenotypes including proteinuria, skeletal malformation, and neurological impairment. Our data establish RSS as a "recyclinopathy" that arises from a dysfunction in the Commander endosomal recycling pathway.
里切尔-申泽尔综合征(RSS)是一种先天性畸形综合征,其特征为小脑、心脏和颅面畸形以及与肝脏、骨骼和肾脏功能障碍相关的表型。RSS的遗传原因仍有待完全明确,关于多种组织表型的根本原因的信息有限。指挥官多蛋白组装体中的致病突变是该综合征的一个新特征。指挥官通过内体网络组织数百种整合膜蛋白的依赖分选连接蛋白17(SNX17)的循环利用。在这里,我们识别出了先前未被认识的RSS患者队列,并对其进行了基因和临床分析,以确定铜代谢murr1结构域包含蛋白(COMMD)蛋白COMMD4、COMMD9以及指挥官复合物的卷曲螺旋结构域包含蛋白93(CCDC93)亚基中的致病基因。通过相互作用组分析,我们确定这些突变破坏了指挥官组装体,并且通过细胞表面蛋白质组学发现,这减少了对肾脏、骨骼和大脑发育至关重要的细胞表面整合膜蛋白的组织特异性呈现。我们确定这些整合蛋白在其面向细胞质的结构域中含有ΦxNPxY/F或ΦxNxxY/F分选基序(其中Φ是疏水残基,x是任何残基),这些基序被SNX17识别以驱动它们依赖指挥官的内体循环利用。最后,通过构建RSS小鼠模型,我们展示了RSS相关临床表型的重现,包括蛋白尿、骨骼畸形和神经功能障碍。我们的数据将RSS确立为一种由指挥官内体循环途径功能障碍引起的“循环病”。