Suppr超能文献

使用3D打印垂直混合器对双乳液微反应器进行连续流式细胞仪分选

Continuous FACS Sorting of Double Emulsion Picoreactors with a 3D-Printed Vertical Mixer.

作者信息

Yang Zijian, Thompson Samuel, Zhang Yanrong, Rutten Iene, Van Duyse Julie, Van Isterdael Gert, Nichols Lisa, Lammertyn Jeroen, Soh Hyongsok T, Fordyce Polly

机构信息

Department of Radiology, Stanford University, Stanford, CA USA 94350, United States.

Department of Genetics, Stanford University, Stanford, CA USA 94350, United States.

出版信息

Anal Chem. 2025 Jul 15;97(27):14406-14414. doi: 10.1021/acs.analchem.5c01536. Epub 2025 Jul 2.

Abstract

High-throughput screening and directed evolution using microfluidic picoreactors have produced high-activity enzymes. In this approach, a substrate is coencapsulated with a candidate enzyme, and individual picoreactors are sorted based on an activity reporter. While many approaches use water-in-oil droplets (single emulsions) for fluorescence-activated droplet sorting (FADS) on custom-fabricated microfluidic devices that require integrated optics and electronics, recent approaches have lowered the engineering barriers to adoption by using simple microfluidic droplet generators to produce water-in-oil-in-water droplets (double emulsion picoreactors, DEs) that can be sorted with commercial FACS (fluorescence-activated cell sorting). Despite the simplified engineering requirements, high variability in loading rates and low yields during loading are barriers to efficient DE FACS sorting. Here, we optimized surfactants to enhance DE stability and demonstrated that a 3D-printed corkscrew on the sample line acts as a vertical mixer to enable more continuous loading. With these optimized loading conditions, we analyzed 1.17 million DEs in four 10 min sorting rounds with a mean frequency of 480 Hz (390 Hz including sample exchanges); in a mock sort of 10% fluorescent DEs, we achieved 89 ± 1% accuracy and 78.0 ± 0.9% recovery with our optimized loading protocol. Overall, improved ease of use and throughput for FACS-sortable DEs should expand the accessibility of directed evolution in controlled in vitro environments.

摘要

使用微流控皮升反应器进行高通量筛选和定向进化已产生了高活性酶。在这种方法中,将一种底物与候选酶共包封,然后根据活性报告分子对各个皮升反应器进行分选。虽然许多方法使用油包水液滴(单乳液)在需要集成光学和电子元件的定制微流控装置上进行荧光激活液滴分选(FADS),但最近的方法通过使用简单的微流控液滴发生器来产生水包油包水液滴(双乳液皮升反应器,DEs),从而降低了采用的工程障碍,这些液滴可以用商业流式细胞仪(荧光激活细胞分选仪,FACS)进行分选。尽管工程要求有所简化,但加载速率的高变异性和加载过程中的低产率是高效DE FACS分选的障碍。在这里,我们优化了表面活性剂以增强DE的稳定性,并证明样品线上的3D打印螺旋装置可作为垂直混合器,实现更连续的加载。在这些优化的加载条件下,我们在四轮10分钟的分选过程中分析了117万个DE,平均频率为480赫兹(包括样品交换在内为390赫兹);在对10%荧光DE进行模拟分选时,我们通过优化的加载方案实现了89±1%的准确率和78.0±0.9%的回收率。总体而言,提高FACS可分选DE的易用性和通量应会扩大在可控体外环境中进行定向进化的可及性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验