P Arulmozhi, R Gopi
Faculty of Information Technology, Dhanalakshmi Srinivasan Engineering College, Perambalur, Tamilnadu, India.
Faculty of Computer Science and Engineering, Dhanalakshmi Srinivasan Engineering College, Perambalur, Tamilnadu, India.
Sci Rep. 2025 Jul 2;15(1):23169. doi: 10.1038/s41598-025-05478-z.
Content-based image retrieval (CBIR) systems have formidable obstacles in connecting human comprehension with machine-driven feature extraction due to the exponential expansion of visual data across many areas. Robust performance across varied datasets is challenging for traditional CBIR methods due to their reliance on hand-crafted features and inflexible structures. This study presents a deep adaptive attention network (DAAN) for CBIR that combines multi-scale feature extraction and hybrid neural architectures to solve these problems and improve the speed and accuracy of visual retrieval. The DAAN architecture integrates transformer-based models for capturing picture contextual connections with deep neural network (DNN) to extract spatial features. A new adaptive multi-level attention module (AMLA) that guarantees accurate feature weighting improves the system's ability to detect minute visual material changes. Findings show that DAAN-CBIR outperforms existing approaches with high mean average precision (map), retrieval speed, and reduced training time. These developments prove its efficacy in various fields, including e-commerce, digital information preservation, medical imaging diagnostics, and personalized media recommendations.
基于内容的图像检索(CBIR)系统在将人类理解与机器驱动的特征提取相联系方面面临巨大障碍,这是由于视觉数据在许多领域呈指数级增长。传统的CBIR方法由于依赖手工制作的特征和不灵活的结构,在不同数据集上实现稳健性能具有挑战性。本研究提出了一种用于CBIR的深度自适应注意力网络(DAAN),它结合了多尺度特征提取和混合神经架构来解决这些问题,并提高视觉检索的速度和准确性。DAAN架构将基于Transformer的模型与深度神经网络(DNN)集成,以捕获图片上下文连接并提取空间特征。一种新的自适应多级注意力模块(AMLA)可确保准确的特征加权,提高了系统检测微小视觉材料变化的能力。研究结果表明,DAAN-CBIR在平均精度均值(map)、检索速度和减少训练时间方面优于现有方法。这些进展证明了它在电子商务、数字信息保存、医学成像诊断和个性化媒体推荐等各个领域的有效性。