Suppr超能文献

用于膀胱癌早期预测的基于内容的图像检索与图像分类系统

Content-Based Image Retrieval and Image Classification System for Early Prediction of Bladder Cancer.

作者信息

Yildirim Muhammed

机构信息

Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Malatya Turgut Ozal University, 44200 Malatya, Turkey.

出版信息

Diagnostics (Basel). 2024 Nov 22;14(23):2637. doi: 10.3390/diagnostics14232637.

Abstract

BACKGROUND/OBJECTIVES: Bladder cancer is a type of cancer that begins in the cells lining the inner surface of the bladder. Although it usually begins in the bladder, it can spread to surrounding tissues, lymph nodes, and other organs in later stages. Early detection of bladder cancer is, therefore, of great importance.

METHODS

Therefore, this study developed two systems based on classification and Content-Based Image Retrieval (CBIR). The primary purpose of CBIR systems is to compare the visual similarities of a user-provided image with the images in the database and return the most similar ones. CBIR systems offer an effective search and retrieval mechanism by directly using the content of the image data.

RESULTS

In the proposed CBIR system, five different CNNs, two different textural-based feature extraction methods, and seven different similarity measurement metrics were tested for feature selection and similarity measurement. Successful feature extraction methods and similarity measurement metrics formed the infrastructure of the developed system. Densenet201 was preferred for feature extraction in the developed system. The cosine metric was used in the proposed CBIR system as a similarity measurement metric, the most successful among seven different metrics.

CONCLUSIONS

As a result, it was seen that the proposed CBIR model showed the highest success using the Densenet201 model for feature extraction and the Cosine similarity measurement method.

摘要

背景/目的:膀胱癌是一种起源于膀胱内表面衬里细胞的癌症。虽然它通常始于膀胱,但在后期可扩散至周围组织、淋巴结和其他器官。因此,早期发现膀胱癌至关重要。

方法

因此,本研究基于分类和基于内容的图像检索(CBIR)开发了两个系统。CBIR系统的主要目的是将用户提供的图像与数据库中的图像进行视觉相似性比较,并返回最相似的图像。CBIR系统通过直接使用图像数据的内容提供了一种有效的搜索和检索机制。

结果

在所提出的CBIR系统中,对五种不同的卷积神经网络(CNN)、两种不同的基于纹理的特征提取方法以及七种不同的相似性度量指标进行了特征选择和相似性度量测试。成功的特征提取方法和相似性度量指标构成了所开发系统的基础架构。在开发的系统中,Densenet201被选为特征提取模型。在所提出的CBIR系统中,余弦度量被用作相似性度量指标,它是七种不同指标中最成功的。

结论

结果表明,所提出的CBIR模型在使用Densenet201模型进行特征提取和余弦相似性度量方法时表现出最高的成功率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0ba/11640112/c156062bba5b/diagnostics-14-02637-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验