Suppr超能文献

硬质支气管镜中的喷射通气动力学:来自模拟实验模型的见解

Jet ventilation dynamics in rigid bronchoscope: insights from a simulated experimental model.

作者信息

Yang Mingyuan, Deng Zhuomin, He Xin, Guo Jing, Yang Shuwang, Cheng Qinghao

机构信息

Department of Anesthesiology, Emergency General Hospital, Beijing, 100028, China.

PMLS Upstream Marketing Department, Shenzhen Mindray Bio-medical Electronics Co., LTD, Shenzhen, China.

出版信息

BMC Anesthesiol. 2025 Jul 2;25(1):332. doi: 10.1186/s12871-025-03200-0.

Abstract

BACKGROUND

Jet ventilation has emerged as a critical technique in airway management during airway interventions involving rigid bronchoscopy. Given the open airway and the lack of objective data on jet ventilation flow dynamics, intraoperative airway management is currently guided primarily by SpO monitoring and arterial blood gas analysis.

OBJECTIVE

To analyze the effects of jet ventilation modes (normal frequency jet ventilation (NFJV), high frequency jet ventilation (HFJV), and superimposed high frequency jet ventilation (SHFJV)), driving pressure, and frequency on airflow dynamics using a simulated airway model.

METHODS

A 3D-printed rigid bronchoscope and artificial airway were integrated with a jet ventilator, airflow analyzer, and test lung. Peak airway pressure (P), positive end-expiratory pressure (PEEP) and tidal volume, were measured under various conditions.

RESULTS

The major trend observed was that as the frequency increases, both P and tidal volume decrease, while PEEP increases; with higher driving pressure, there is an increase in P, PEEP and tidal volume. During NFJV, maxim P 26.0 (0.7) cmH₂O and tidal volume1399 (3) ml were observed at 1.5 bar and12 bpm, while minimum values 11.8 (0.4) cmH₂O and 488 (3) ml occurred at 0.7 bar and 24 bpm. During HFJV, P, PEEP and tidal volume reached their lowest values at 4.7 (0.3) cmHO, 0.8 (0.2) cmHO and 24 (3) ml (set at 0.3 bar and 300 bpm). When driving pressure was set at 1.1 bar, both P and tidal volume reached their highest values at 22.3 (0.4) cmHO and 280 (2) ml when jet frequency was100 bpm; while, the maximum PEEP reaches highest value of 6.1 (0.3) cmHO when jet frequency increased to 300 bpm. SHFJV demonstrated dynamic interactions, with tidal volume ranging from 614 (3) ml to 1105 (1) ml as driving pressure increased from 0.3 to 1.1 bar. At 1.1 bar and 100 bpm, P achieved a value of 41.1 (0.3) cmHO and PEEP levels increase to 8.4 (0.3) cmHO set at 1.1 bar and 1500 bpm.

CONCLUSIONS

NFJV provides a larger tidal volume and maintains stable peak pressure, whereas HFJV results in lower tidal volumes at high frequencies and low pressures, which may clinically result in CO retention. SHFJV combines the benefits of both modes, showing potential for complex airway conditions. These findings emphasize the importance of protocolized parameter selection based on individualized airway mechanics.

摘要

背景

喷射通气已成为硬质支气管镜气道干预过程中气道管理的关键技术。鉴于气道开放且缺乏关于喷射通气气流动力学的客观数据,目前术中气道管理主要依靠脉搏血氧饱和度监测和动脉血气分析来指导。

目的

使用模拟气道模型分析喷射通气模式(常规频率喷射通气(NFJV)、高频喷射通气(HFJV)和叠加高频喷射通气(SHFJV))、驱动压力和频率对气流动力学的影响。

方法

将3D打印的硬质支气管镜和人工气道与喷射呼吸机、气流分析仪和测试肺集成。在各种条件下测量气道峰压(P)、呼气末正压(PEEP)和潮气量。

结果

观察到的主要趋势是,随着频率增加,P和潮气量均降低,而PEEP增加;驱动压力越高,P、PEEP和潮气量增加。在NFJV期间,在1.5巴和12次/分钟时观察到最大P为26.0(0.7)厘米水柱,潮气量为1399(3)毫升,而在0.7巴和24次/分钟时出现最小值11.8(0.4)厘米水柱和488(3)毫升。在HFJV期间,P、PEEP和潮气量在4.7(0.3)厘米水柱、0.8(0.2)厘米水柱和24(3)毫升时达到最低值(设置为0.3巴和300次/分钟)。当驱动压力设置为1.1巴时,当喷射频率为100次/分钟时,P和潮气量在22.3(0.4)厘米水柱和280(2)毫升时达到最高值;而当喷射频率增加到300次/分钟时,最大PEEP达到最高值6.1(0.3)厘米水柱。SHFJV表现出动态相互作用,随着驱动压力从0.3巴增加到1.1巴,潮气量范围从614(3)毫升到1105(1)毫升。在1.1巴和100次/分钟时,P达到41.1(0.3)厘米水柱的值,PEEP水平在1.1巴和1500次/分钟时增加到8.4(0.3)厘米水柱。

结论

NFJV提供更大的潮气量并维持稳定的峰压,而HFJV在高频和低压下导致较低的潮气量,这在临床上可能导致二氧化碳潴留。SHFJV结合了两种模式的优点,显示出在复杂气道条件下的潜力。这些发现强调了基于个体化气道力学进行规范化参数选择的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验