Suppr超能文献

中国养老服务的转型:基于TF-IDF的国家政策(2018-2022年)数据挖掘分析的见解

Transforming aged care in China: insights from a TF-IDF-based data mining analysis of national policies (2018-2022).

作者信息

Liu Zhihan, Li Hebin, Zhang Ziyan, Ping Lu, Gu Wenxin, Yao Yuan

机构信息

School of Public Administration, Central South University, Changsha, Hunan, 410004, China.

Business School, Central South University, Changsha, Hunan, 410083, China.

出版信息

BMC Geriatr. 2025 Jul 2;25(1):467. doi: 10.1186/s12877-025-06103-4.

Abstract

BACKGROUND

As China grapples with rapid demographic shifts due to an aging population, the urgency for innovative aged care policies has intensified.

OBJECTIVE

This study addresses a significant research gap by employing a text mining approach based on the Term Frequency-Inverse Document Frequency (TF-IDF) method, quantitatively analyzing a broad array of policy documents from 2018 to 2022.

METHODS

It identifies key trends and shifts, using core feature words to construct co-occurrence and heterogeneity matrices analyzed via multidimensional scaling techniques.

RESULTS

Research results from 2018 to 2022 highlight China's focus on epidemic prevention, integrated care tailored to Chinese contexts, innovative social security and financial products, and the advancement of smart aged care against a backdrop of multifaceted demands. By analyzing policy changes surrounding significant political events and conducting comparative analysis with previous studies, this study delineates the evolution of policy priorities and anticipates future directions, highlighting the need to integrate advanced technologies and financial mechanisms to strengthen service delivery systems. These adjustments not only meet current demands but also strategically position China to navigate the complexities of an aging society.

CONCLUSIONS

This research provides critical insights for global policymakers facing similar demographic challenges, advocating for a resilient, holistic, and inclusive aged care system.

摘要

背景

随着中国因人口老龄化而面临快速的人口结构变化,创新养老政策的紧迫性日益增强。

目的

本研究通过采用基于词频-逆文档频率(TF-IDF)方法的文本挖掘方法,定量分析2018年至2022年的一系列政策文件,填补了一个重大的研究空白。

方法

它利用核心特征词识别关键趋势和变化,构建共现矩阵和异质性矩阵,并通过多维缩放技术进行分析。

结果

2018年至2022年的研究结果表明,在中国多方面需求的背景下,中国注重疫情防控、适合中国国情的综合照护、创新的社会保障和金融产品以及智能养老的发展。通过分析重大政治事件周围的政策变化并与以往研究进行比较分析,本研究描绘了政策重点的演变并预测了未来方向,强调需要整合先进技术和金融机制以加强服务提供系统。这些调整不仅满足当前需求,还使中国在应对老龄化社会的复杂性方面占据战略优势。

结论

本研究为面临类似人口挑战的全球政策制定者提供了关键见解,倡导建立一个有韧性、全面且包容的养老体系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8355/12220013/7739c6dc3238/12877_2025_6103_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验