Suppr超能文献

基于卷积神经网络的胸部X光图像疾病智能诊断模型

Intelligent diagnosis model for chest X-ray images diseases based on convolutional neural network.

作者信息

Yang Shouyi, Wu Yongxin

机构信息

Department of Medical School, Kunming University of Science and Technology, Kunming, Yunnan, 650031, China.

Department of Cardiology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, China.

出版信息

BMC Med Imaging. 2025 Jul 2;25(1):263. doi: 10.1186/s12880-025-01800-3.

Abstract

To address misdiagnosis caused by feature coupling in multi-label medical image classification, this study introduces a chest X-ray pathology reasoning method. It combines hierarchical attention convolutional networks with a multi-label decoupling loss function. This method aims to enhance the precise identification of complex lesions. It dynamically captures multi-scale lesion morphological features and integrates lung field partitioning with lesion localization through a dual-path attention mechanism, thereby improving clinical disease prediction accuracy. An adaptive dilated convolution module with 3 × 3 deformable kernels dynamically captures multi-scale lesion features. A channel-space dual-path attention mechanism enables precise feature selection for lung field partitioning and lesion localization. Cross-scale skip connections fuse shallow texture and deep semantic information, enhancing microlesion detection. A KL divergence-constrained contrastive loss function decouples 14 pathological feature representations via orthogonal regularization, effectively resolving multi-label coupling. Experiments on ChestX-ray14 show a weighted F1-score of 0.97, Hamming Loss of 0.086, and AUC values exceeding 0.94 for all pathologies. This study provides a reliable tool for multi-disease collaborative diagnosis.

摘要

为解决多标签医学图像分类中特征耦合导致的误诊问题,本研究引入了一种胸部X光病理推理方法。该方法将分层注意力卷积网络与多标签解耦损失函数相结合。其目的在于提高对复杂病变的精确识别。它通过双路径注意力机制动态捕捉多尺度病变形态特征,并将肺野划分与病变定位相结合,从而提高临床疾病预测准确性。具有3×3可变形内核的自适应扩张卷积模块动态捕捉多尺度病变特征。通道-空间双路径注意力机制为肺野划分和病变定位实现精确的特征选择。跨尺度跳跃连接融合浅层纹理和深层语义信息,增强微病变检测。一种KL散度约束的对比损失函数通过正交正则化对14种病理特征表示进行解耦,有效解决多标签耦合问题。在ChestX-ray14数据集上的实验表明,所有病理的加权F1分数为0.97,汉明损失为0.086,AUC值超过0.94。本研究为多疾病协同诊断提供了一个可靠的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验