Suppr超能文献

基于一小部分单核苷酸多态性(SNP)的靶向二代测序(NGS)数据进行基因分型能够正确匹配患者样本。

Genotyping from targeted NGS data based on a small set of SNPs correctly matches patient samples.

作者信息

Yosifov Deyan Yordanov, Schneider Christof, Stilgenbauer Stephan, Mertens Daniel, Tausch Eugen

机构信息

Division of CLL, Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany.

Cooperation Unit "Mechanisms of Leukemogenesis", German Cancer Research Center (DKFZ), Heidelberg, Germany.

出版信息

BMC Res Notes. 2025 Jul 2;18(1):270. doi: 10.1186/s13104-025-07348-3.

Abstract

OBJECTIVE

Mislabelling and swapping of laboratory samples are handling errors that can lead to erroneous interpretation of data and/or patient harm. Sequenced samples can be traced back to the respective donors by matching of single nucleotide polymorphisms (SNPs). Frameworks and software to do this have been developed for use with whole genome/exome sequencing data but not for targeted next-generation sequencing (tNGS), possibly due to the limited genomic coverage with tNGS and the need for individualization of the set of interrogated SNPs. We decided to adapt a popular tool for use with tNGS data, to demonstrate the possibility of selecting informative SNPs from a typical tNGS panel and to create an automated workflow for detection of sample handling errors.

RESULTS

We compiled a custom list of 28 SNPs and with its help we demonstrated the practicability of using only tNGS data to cost-effectively detect mislabelled samples. In two cohorts of totally 1441 patients with sequential samples, we could identify 3 sample swaps, 7 mislabelled samples (3 externally and 4 internally) and 1 mistake of unknown origin. We provide an R function for automated detection of sample swaps and mislabelling to the community as a free and open-source tool.

摘要

目的

实验室样本标记错误和样本交换是操作失误,可能导致数据解读错误和/或对患者造成伤害。通过单核苷酸多态性(SNP)匹配,测序样本可追溯至各自的捐赠者。用于全基因组/外显子组测序数据的相关框架和软件已开发出来,但针对靶向新一代测序(tNGS)的尚未开发,这可能是由于tNGS的基因组覆盖范围有限,以及需要对所检测的SNP集进行个体化处理。我们决定改编一种常用工具以用于tNGS数据,证明从典型的tNGS面板中选择信息性SNP的可能性,并创建一个用于检测样本处理错误的自动化工作流程。

结果

我们编制了一份包含28个SNP的自定义列表,并借助该列表证明了仅使用tNGS数据经济高效地检测标记错误样本的可行性。在两组共1,441例有连续样本的患者中,我们能够识别出3次样本交换、7个标记错误的样本(3个外部样本和4个内部样本)以及1个来源不明的错误。我们向社区提供了一个用于自动检测样本交换和标记错误的R函数,作为免费的开源工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验