文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

暴力死亡叙事的监督式自然语言处理分类:一个紧凑大语言模型的开发与评估

Supervised Natural Language Processing Classification of Violent Death Narratives: Development and Assessment of a Compact Large Language Model.

作者信息

Parker Susan T

机构信息

Feinberg School of Medicine, Northwestern University, 750 N Lakeshore, Chicago, IL, 60611, United States, 1 2487613116.

出版信息

JMIR AI. 2025 Jun 19;4:e68212. doi: 10.2196/68212.


DOI:10.2196/68212
PMID:40605837
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12223685/
Abstract

BACKGROUND: The recent availability of law enforcement and coroner or medical examiner reports for nearly every violent death in the United States expands the potential for natural language processing (NLP) research into violence. OBJECTIVE: The objective of this work is to assess applications of supervised NLP to unstructured data in the National Violent Death Reporting System to predict circumstances and types of violent death. METHODS: This analysis applied distilBERT, a compact large language model (LLM) with fewer parameters relative to full-scale LLMs, to unstructured narrative data to simulate the impacts of preprocessing, volume, and composition of training data on model performance, evaluated by F1-scores, precision, recall, and the false negative rate. Model performance was evaluated for bias by race, ethnicity, and sex by comparing F1-scores across subgroups. RESULTS: A minimum training set of 1500 cases was necessary to achieve an F1-score of 0.6 and a false negative rate of 0.01-0.05 with a compact LLM. Replacement of domain-specific jargon improved model performance, while oversampling positive class cases to address class imbalance did not substantially improve F1-scores. Between racial and ethnic groups, F1-score disparities ranged from 0.2 to 0.25, and between male and female decedents, differences ranged from 0.12 to 0.2. CONCLUSIONS: Compact LLMs with sufficient training data can be applied to supervised NLP tasks with a class imbalance in the National Violent Death Reporting System. Simulations of supervised text classification across the model-fitting process of preprocessing and training compact LLM-informed NLP applications to unstructured death narrative data.

摘要

背景:最近,美国几乎每起暴力死亡事件都有执法部门以及验尸官或法医的报告,这为暴力事件的自然语言处理(NLP)研究拓展了潜力。 目的:本研究的目的是评估监督式NLP在国家暴力死亡报告系统中的非结构化数据上的应用,以预测暴力死亡的情况和类型。 方法:本分析将distilBERT(一种相对于全规模语言模型参数较少的紧凑型大语言模型)应用于非结构化叙述数据,以模拟预处理、训练数据量和构成对模型性能的影响,通过F1分数、精确率、召回率和假阴性率进行评估。通过比较各亚组的F1分数,评估模型在种族、族裔和性别方面的偏差表现。 结果:使用紧凑型大语言模型时,要达到F1分数为0.6且假阴性率为0.01 - 0.05,至少需要1500个案例的训练集。替换特定领域的行话可提高模型性能,而对正类案例进行过采样以解决类别不平衡问题,并未显著提高F1分数。在种族和族裔群体之间,F1分数差异在0.2至0.25之间,在男性和女性死者之间,差异在0.12至0.2之间。 结论:具有足够训练数据的紧凑型大语言模型可应用于国家暴力死亡报告系统中存在类别不平衡的监督式NLP任务。对预处理和训练紧凑型大语言模型驱动的NLP应用于非结构化死亡叙述数据的模型拟合过程进行监督式文本分类模拟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de35/12223685/02835e438ba2/ai-v4-e68212-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de35/12223685/59cf08e351ba/ai-v4-e68212-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de35/12223685/e3c457d8c1b7/ai-v4-e68212-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de35/12223685/a7dd22286e4f/ai-v4-e68212-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de35/12223685/a77be6a63b29/ai-v4-e68212-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de35/12223685/d62373a836ff/ai-v4-e68212-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de35/12223685/3569f4ae9c71/ai-v4-e68212-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de35/12223685/02835e438ba2/ai-v4-e68212-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de35/12223685/59cf08e351ba/ai-v4-e68212-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de35/12223685/e3c457d8c1b7/ai-v4-e68212-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de35/12223685/a7dd22286e4f/ai-v4-e68212-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de35/12223685/a77be6a63b29/ai-v4-e68212-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de35/12223685/d62373a836ff/ai-v4-e68212-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de35/12223685/3569f4ae9c71/ai-v4-e68212-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de35/12223685/02835e438ba2/ai-v4-e68212-g007.jpg

相似文献

[1]
Supervised Natural Language Processing Classification of Violent Death Narratives: Development and Assessment of a Compact Large Language Model.

JMIR AI. 2025-6-19

[2]
Surveillance for Violent Deaths - National Violent Death Reporting System, 50 States, the District of Columbia, and Puerto Rico, 2022.

MMWR Surveill Summ. 2025-6-12

[3]
Algorithmic Classification of Psychiatric Disorder-Related Spontaneous Communication Using Large Language Model Embeddings: Algorithm Development and Validation.

JMIR AI. 2025-5-30

[4]
Enhancing Pulmonary Disease Prediction Using Large Language Models With Feature Summarization and Hybrid Retrieval-Augmented Generation: Multicenter Methodological Study Based on Radiology Report.

J Med Internet Res. 2025-6-11

[5]
From BERT to generative AI - Comparing encoder-only vs. large language models in a cohort of lung cancer patients for named entity recognition in unstructured medical reports.

Comput Biol Med. 2025-9

[6]
Racial and Ethnic Minorities Underrepresented in Pain Management Guidelines for Total Joint Arthroplasty: A Meta-analysis.

Clin Orthop Relat Res. 2024-9-1

[7]
Using a Large Language Model for Postdeployment Monitoring of FDA-Approved Artificial Intelligence: Pulmonary Embolism Detection Use Case.

J Am Coll Radiol. 2025-6-30

[8]
Falls prevention interventions for community-dwelling older adults: systematic review and meta-analysis of benefits, harms, and patient values and preferences.

Syst Rev. 2024-11-26

[9]
Evaluating and Improving Syndrome Differentiation Thinking Ability in Large Language Models: Method Development Study.

JMIR Med Inform. 2025-6-20

[10]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

本文引用的文献

[1]
Applying neural network algorithms to ascertain reported experiences of violence in routine mental healthcare records and distributions of reports by diagnosis.

Front Psychiatry. 2024-9-10

[2]
Large language models in health care: Development, applications, and challenges.

Health Care Sci. 2023-7-24

[3]
A machine learning case study to predict rare clinical event of interest: imbalanced data, interpretability, and practical considerations.

J Biopharm Stat. 2024-6-11

[4]
Natural language processing of multi-hospital electronic health records for public health surveillance of suicidality.

Npj Ment Health Res. 2024-2-14

[5]
A comprehensive evaluation of large Language models on benchmark biomedical text processing tasks.

Comput Biol Med. 2024-3

[6]
Gendered Patterns in Manifest and Latent Mental Health Indicators Among Suicide Decedents: 2003-2020 National Violent Death Reporting System (NVDRS).

Am J Public Health. 2024-3

[7]
Identifying Rare Circumstances Preceding Female Firearm Suicides: Validating A Large Language Model Approach.

JMIR Ment Health. 2023-10-17

[8]
Identifying suicide documentation in clinical notes through zero-shot learning.

Health Sci Rep. 2023-9-11

[9]
Large Language Models in Medical Education: Opportunities, Challenges, and Future Directions.

JMIR Med Educ. 2023-6-1

[10]
Research utility and limitations of textual data in the National Violent Death Reporting System: a scoping review and recommendations.

Inj Epidemiol. 2023-5-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索