Ma Hao, Tan Min, Xie Gaosheng, Xiong Jing, Xia Zeyang, Zhang Yin
Software College, Northeastern University, Shenyang, China.
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Quant Imaging Med Surg. 2025 Jun 6;15(6):5546-5566. doi: 10.21037/qims-24-1462. Epub 2025 May 30.
In deep learning-assisted intracerebral hemorrhage (ICH) diagnosis, because weak image-level labels cannot provide supervisory information about the target location, weakly-supervised semantic segmentation (WSSS) methods are relatively limited. Therefore, we developed a novel method for improving the ICH segmentation results from weak image-level labels.
This paper proposes the Shallow-Feature class activation map (CAM) module, which utilizes fine-grained information from the shallow feature maps of convolutional neural networks (CNNs) to generate CAM for accurate target localization and contour. Then, the Spatial Context Aware (SCA) module utilizes the spatial context information in computed tomography (CT) images to further complete the hemorrhage sites that the CAM of the current slice failed to locate. Finally, we binarize the CAM based on the selected threshold to generate pseudo-segmentation masks. Additionally, we used two publicly available ICH segmentation datasets, the Brain Hemorrhage Segmentation Dataset (BHSD) and the CT Images for Intracranial Hemorrhage Detection and Segmentation Dataset (BCIHM), to verify the efficiency of our proposed method.
Our results showed that our proposed method is effective in improving the accuracy of ICH segmentation, with the mean Intersection over Union (mIoU) increasing from 52.5% to 69.8% in BHSD and 50.1% to 68.9% in BCIHM. The segmentation results of ICH generated by our method were superior to other WSSS methods, with a mIoU of 69.8% and 68.9%, correct localization of 48.1% and 48.9%, missed localization of 51.9% and 51.1%, false positive localization of 49.8% and 51.2%, reached 88% and 86% of the fully supervised U-Net performance, in BHSD and BCIHM, respectively.
Our proposed method can better match the location and contours of hemorrhage points, significantly reducing missed localization and false positive localization, thus effectively reducing the workload of professional radiologists in creating pixel-level datasets.
在深度学习辅助的脑出血(ICH)诊断中,由于弱图像级标签无法提供关于目标位置的监督信息,弱监督语义分割(WSSS)方法相对有限。因此,我们开发了一种新方法,用于从弱图像级标签中提高ICH分割结果。
本文提出了浅特征类激活映射(CAM)模块,该模块利用卷积神经网络(CNN)浅特征图中的细粒度信息来生成CAM,以实现准确的目标定位和轮廓提取。然后,空间上下文感知(SCA)模块利用计算机断层扫描(CT)图像中的空间上下文信息,进一步完善当前切片的CAM未能定位的出血部位。最后,我们基于选定的阈值对CAM进行二值化处理,以生成伪分割掩码。此外,我们使用了两个公开可用的ICH分割数据集,即脑出血分割数据集(BHSD)和用于颅内出血检测与分割的CT图像数据集(BCIHM),来验证我们提出方法的有效性。
我们的结果表明,我们提出的方法在提高ICH分割准确性方面是有效的,在BHSD中,平均交并比(mIoU)从52.5%提高到69.8%,在BCIHM中从50.1%提高到68.9%。我们方法生成的ICH分割结果优于其他WSSS方法,在BHSD和BCIHM中,mIoU分别为69.8%和68.9%,正确定位率为48.1%和48.9%,漏定位率为51.9%和51.1%,假阳性定位率为49.8%和51.2%,分别达到了全监督U-Net性能的88%和86%。
我们提出的方法能够更好地匹配出血点的位置和轮廓,显著减少漏定位和假阳性定位,从而有效减轻专业放射科医生创建像素级数据集的工作量。