Suppr超能文献

使用带挤压激励块的 3D U-Net 进行出血性中风病变分割。

Hemorrhagic stroke lesion segmentation using a 3D U-Net with squeeze-and-excitation blocks.

机构信息

Computer Vision and Robotics Group, University of Girona, Catalonia, Spain.

Department of Radiology, Hospital Universitari Dr Josep Trueta - Institut d'Investigació Biomèdica de Girona, Girona, Catalonia, Spain.

出版信息

Comput Med Imaging Graph. 2021 Jun;90:101908. doi: 10.1016/j.compmedimag.2021.101908. Epub 2021 Apr 14.

Abstract

Hemorrhagic stroke is the condition involving the rupture of a vessel inside the brain and is characterized by high mortality rates. Even if the patient survives, stroke can cause temporary or permanent disability depending on how long blood flow has been interrupted. Therefore, it is crucial to act fast to prevent irreversible damage. In this work, a deep learning-based approach to automatically segment hemorrhagic stroke lesions in CT scans is proposed. Our approach is based on a 3D U-Net architecture which incorporates the recently proposed squeeze-and-excitation blocks. Moreover, a restrictive patch sampling is proposed to alleviate the class imbalance problem and also to deal with the issue of intra-ventricular hemorrhage, which has not been considered as a stroke lesion in our study. Moreover, we also analyzed the effect of patch size, the use of different modalities, data augmentation and the incorporation of different loss functions on the segmentation results. All analyses have been performed using a five fold cross-validation strategy on a clinical dataset composed of 76 cases. Obtained results demonstrate that the introduction of squeeze-and-excitation blocks, together with the restrictive patch sampling and symmetric modality augmentation, significantly improved the obtained results, achieving a mean DSC of 0.86±0.074, showing promising automated segmentation results.

摘要

脑出血是指脑内血管破裂的病症,其死亡率较高。即使患者存活下来,中风也可能导致暂时性或永久性残疾,具体取决于血流中断的时间长短。因此,迅速采取行动防止不可逆转的损伤至关重要。在这项工作中,提出了一种基于深度学习的方法,用于自动分割 CT 扫描中的脑出血病变。我们的方法基于 3D U-Net 架构,其中包含最近提出的 squeeze-and-excitation 块。此外,提出了一种限制补丁采样方法来减轻类别不平衡问题,并解决脑室出血问题,在我们的研究中,脑室出血未被视为中风病变。此外,我们还分析了补丁大小、使用不同模态、数据增强和不同损失函数的引入对分割结果的影响。所有分析均使用包含 76 例的临床数据集在五重交叉验证策略上进行。所得结果表明,引入 squeeze-and-excitation 块,结合限制补丁采样和对称模态增强,显著提高了所得结果,平均 DSC 达到 0.86±0.074,显示出有前途的自动分割结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验