Suppr超能文献

基于跨模态同变约束的弱监督分割。

Weakly supervised segmentation with cross-modality equivariant constraints.

机构信息

Purdue University, West Lafayette, IN 47907, USA.

École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada.

出版信息

Med Image Anal. 2022 Apr;77:102374. doi: 10.1016/j.media.2022.102374. Epub 2022 Jan 23.

Abstract

Weakly supervised learning has emerged as an appealing alternative to alleviate the need for large labeled datasets in semantic segmentation. Most current approaches exploit class activation maps (CAMs), which can be generated from image-level annotations. Nevertheless, resulting maps have been demonstrated to be highly discriminant, failing to serve as optimal proxy pixel-level labels. We present a novel learning strategy that leverages self-supervision in a multi-modal image scenario to significantly enhance original CAMs. In particular, the proposed method is based on two observations. First, the learning of fully-supervised segmentation networks implicitly imposes equivariance by means of data augmentation, whereas this implicit constraint disappears on CAMs generated with image tags. And second, the commonalities between image modalities can be employed as an efficient self-supervisory signal, correcting the inconsistency shown by CAMs obtained across multiple modalities. To effectively train our model, we integrate a novel loss function that includes a within-modality and a cross-modality equivariant term to explicitly impose these constraints during training. In addition, we add a KL-divergence on the class prediction distributions to facilitate the information exchange between modalities which, combined with the equivariant regularizers further improves the performance of our model. Exhaustive experiments on the popular multi-modal BraTS and prostate DECATHLON segmentation challenge datasets demonstrate that our approach outperforms relevant recent literature under the same learning conditions.

摘要

弱监督学习作为一种有吸引力的替代方法,缓解了语义分割中对大量标记数据集的需求。目前大多数方法都利用了类激活图(CAM),它可以从图像级别的注释中生成。然而,生成的地图被证明是高度有区别的,无法作为最佳的像素级标签。我们提出了一种新的学习策略,利用多模态图像场景中的自我监督来显著增强原始 CAM。具体来说,该方法基于两个观察结果。首先,全监督分割网络的学习通过数据增强隐式地施加等变性,而在使用图像标签生成的 CAM 上,这种隐式约束消失了。其次,可以利用图像模态之间的共性作为有效的自我监督信号,纠正跨多个模态获得的 CAM 显示出的不一致性。为了有效地训练我们的模型,我们整合了一种新的损失函数,该函数包括模态内和模态间的等变项,以在训练过程中显式地施加这些约束。此外,我们在类预测分布上添加了一个 KL 散度,以促进模态之间的信息交换,与等变正则化器结合,进一步提高了我们模型的性能。在流行的多模态 BraTS 和前列腺 DECATHLON 分割挑战赛数据集上的详尽实验表明,在相同的学习条件下,我们的方法优于相关的最新文献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验