Suppr超能文献

基于三维几何信息的听小骨链自动测量探索

Exploration of Automated Measurement for Ossicular Chains Based on 3-Dimensional Geometric Information.

作者信息

Zhang Mengshi, Zhang Yufan, Guo Sihui, Li Xiaoguang, Zhuo Li, Ren Yuxue, Chen Wei, Feng Yili, Tang Ruowei, Lv Han, Zhao Pengfei, Wang Zhenchang, Yin Hongxia

机构信息

Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.

Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing 100124, China.

出版信息

Cyborg Bionic Syst. 2025 Jul 2;6:0305. doi: 10.34133/cbsystems.0305. eCollection 2025.

Abstract

Abnormalities in the ossicular chain, a key middle-ear component that is crucial for sound transmission, can lead to conductive hearing loss; reconstruction offers an effective treatment. Accurate preoperative ossicular-chain measurements are essential for creating prostheses; however, current methods rely on cadaver studies or manual measurements from 2-dimensional images, which are time-intensive and laborious and depend heavily on radiologist expertise. To improve efficiency, we aimed to develop a systematic approach for automated ossicular-chain segmentation and measurement using ultra-high-resolution computed tomography (U-HRCT). One hundred forty patients (226 ears) with normal ear anatomy underwent U-HRCT. Twelve parameters were defined to measure ossicular-chain components. Automated measurements based on automated segmentation of 226 ear images were verified through manual measurements. We analyzed variations by ear side, sex, and age group. Stapes analysis was limited by segmentation accuracy. Complete segmentation of the malleus, incus, and stapes was achieved in 47 ears. Automated measurements of 8 parameters showed no significant differences compared to manual measurements in 47 cases. Significant sex-based differences emerged in all parameters except stapes footplate length, incudostapedial joint angle, and stapes volume ( = 0.205, = 0.560, and = 0.170, respectively). Notable side-specific differences were observed in female incus height and male malleus volume ( = 0.017 and = 0.037, respectively). No statistically significant differences were found in other parameters across different age groups, except for malleus and incus volumes ( = 0.015 and = 0.031). The proposed algorithm effectively automated ossicular-chain segmentation and measurement, establishing a normative range for ossicular parameters and providing a valuable reference for detecting abnormalities.

摘要

听骨链是中耳的关键组成部分,对声音传导至关重要,其异常可导致传导性听力损失;重建手术提供了一种有效的治疗方法。准确的术前听骨链测量对于制作假体至关重要;然而,目前的方法依赖于尸体研究或二维图像的手动测量,这些方法耗时费力,且严重依赖放射科医生的专业知识。为了提高效率,我们旨在开发一种使用超高分辨率计算机断层扫描(U-HRCT)进行听骨链自动分割和测量的系统方法。140例耳部解剖结构正常的患者(226只耳)接受了U-HRCT检查。定义了12个参数来测量听骨链组件。通过手动测量验证了基于226只耳图像自动分割的自动测量结果。我们分析了耳侧、性别和年龄组的差异。镫骨分析受分割精度限制。47只耳实现了锤骨、砧骨和镫骨的完整分割。47例中,8个参数的自动测量与手动测量相比无显著差异。除镫骨足板长度、砧镫关节角度和镫骨体积外(分别为 = 0.205、 = 0.560和 = 0.170),所有参数均出现了显著的性别差异。在女性砧骨高度和男性锤骨体积方面观察到明显的侧别差异(分别为 = 0.017和 = 0.037)。除锤骨和砧骨体积外(分别为 = 0.015和 = 0.031),不同年龄组的其他参数未发现统计学上的显著差异。所提出的算法有效地实现了听骨链的自动分割和测量,建立了听骨参数的正常范围,并为检测异常提供了有价值的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8663/12214297/c4120aadbe26/cbsystems.0305.fig.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验