Takahashi Yohei, Joo Hyunhee, Pankasem Nattiwong, Hsu Po-Kai, Schroeder Julian I
Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan.
Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
Plant Cell Physiol. 2025 Sep 25;66(9):1259-1273. doi: 10.1093/pcp/pcaf074.
Stomatal pores in land plants rapidly and reversibly open and close in response to diurnal changes in leaf carbon dioxide (CO2) concentration. Studies have suggested that CO2 is sensed by guard cells with relevant amplifying contributions from mesophyll tissue. CO2 concentration changes trigger rapid signal transduction events involving protein phosphorylation in guard cells. Moreover, molecular crosstalk and physiological interactions of the stomatal CO2 response with other environmental conditions and stimuli, including light, temperature, drought, and abscisic acid, are reviewed here. Genetic studies have revealed several key genes and provided important insights into the stomatal CO2 sensors and signal transduction mechanisms. The primary CO2/HCO3- sensor in Arabidopsis guard cells was recently identified. Quantitative trait locus (QTL) analyses have shown that early guard cell CO2 signal transduction components regulate water use efficiency (WUE). In this review, we describe the molecular details of stomatal CO2 sensing by CO2/HCO3--induced interaction of two protein kinases, the HIGH LEAF TEMPERATURE 1 Raf-like kinase and the MPK4/MPK12 mitogen-activated protein kinases. The evolutionary emergence of, physiological relevance of, and potential for improvement of WUE of plants via the stomatal CO2 response and open questions in this research field are discussed.
陆地植物的气孔会根据叶片二氧化碳(CO₂)浓度的昼夜变化迅速且可逆地开合。研究表明,保卫细胞能够感知CO₂,叶肉组织也会起到相关的放大作用。CO₂浓度变化会触发保卫细胞中涉及蛋白质磷酸化的快速信号转导事件。此外,本文还综述了气孔CO₂响应与其他环境条件和刺激(包括光、温度、干旱和脱落酸)之间的分子相互作用和生理相互作用。遗传学研究已经揭示了几个关键基因,并为气孔CO₂传感器和信号转导机制提供了重要见解。拟南芥保卫细胞中的主要CO₂/HCO₃⁻传感器最近已被鉴定出来。数量性状位点(QTL)分析表明,早期保卫细胞CO₂信号转导成分调节水分利用效率(WUE)。在这篇综述中,我们描述了由CO₂/HCO₃⁻诱导的两种蛋白激酶——高温1 Raf样激酶和MPK4/MPK12丝裂原活化蛋白激酶相互作用介导的气孔CO₂感知的分子细节。本文还讨论了通过气孔CO₂响应植物水分利用效率在进化上的出现、生理相关性以及提高的潜力,以及该研究领域中尚未解决的问题。