Navidinia Amir Abbas, Khayami Reza, Gholami Alireza, Fathi Mahnaz, Keshavarz Ali, Karami Najibe, Alipanah Hirad, Ahmadi Ali, Rostami Shahrbano, Chahardouli Bahram
Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
PLoS One. 2025 Jul 3;20(7):e0325145. doi: 10.1371/journal.pone.0325145. eCollection 2025.
The tumor microenvironment (TME) exerts a profound influence on the progression, therapeutic responses, and clinical outcomes of acute myeloid leukemia (AML), a prevalent hematologic malignancy in adults. This study aimed to establish a TME-based prognostic model to unveil novel therapeutic and prognostic avenues for AML.
Gene expression profiles and clinical information for 134 AML patients were retrieved from The Cancer Genome Atlas (TCGA). The TME cellular components were evaluated using the ESTIMATE algorithm, and differentially expressed genes (DEGs) were identified. A Microenvironment Prognostic Model (MPM) was subsequently constructed through univariate Cox regression, LASSO regression, and multivariate Cox regression analyses. The predictive performance of the MPM was validated in a separate cohort of 312 AML patients from the TARGET database.
Kaplan-Meier analysis revealed significant associations between the TME, French-American-British (FAB) classification, and overall survival (p-values = 3.6e-07 and 0.011, respectively). LASSO-Cox regression identified eight essential genes (CXCL12, GZMB, ITPR2, LYN, RAB9B, RGMB, RUFY4, TRIM16) that exhibited a strong correlation with survival (p-value < 0.0001). The MPM demonstrated excellent prognostic performance, with area under the curve (AUC) values of 84.05, 85.73, and 89.54 for predicting 1-, 3-, and 5-year survival, respectively. External validation with the TARGET database underscored the robustness of this model, yielding AUC values of 60.5%, 56.7%, and 55.7% at the corresponding intervals.
These findings present a TME-based prognostic model that offers a promising avenue for precise risk stratification and targeted therapeutic strategies in AML.
肿瘤微环境(TME)对急性髓系白血病(AML,成人中一种常见的血液系统恶性肿瘤)的进展、治疗反应及临床结局有着深远影响。本研究旨在建立一种基于TME的预后模型,以揭示AML新的治疗和预后途径。
从癌症基因组图谱(TCGA)中获取134例AML患者的基因表达谱和临床信息。使用ESTIMATE算法评估TME细胞成分,并鉴定差异表达基因(DEG)。随后通过单变量Cox回归、LASSO回归和多变量Cox回归分析构建微环境预后模型(MPM)。在来自TARGET数据库的312例AML患者的独立队列中验证MPM的预测性能。
Kaplan-Meier分析显示TME、法国-美国-英国(FAB)分类与总生存期之间存在显著关联(p值分别为3.6e-07和0.011)。LASSO-Cox回归确定了八个与生存密切相关的关键基因(CXCL12、GZMB、ITPR2、LYN、RAB9B、RGMB、RUFY4、TRIM16)(p值<0.0001)。MPM显示出优异的预后性能,预测1年、3年和5年生存率的曲线下面积(AUC)值分别为84.05、85.73和89.54。使用TARGET数据库进行外部验证强调了该模型的稳健性,在相应时间间隔的AUC值分别为60.5%、56.7%和55.7%。
这些发现提出了一种基于TME的预后模型,为AML的精确风险分层和靶向治疗策略提供了一条有前景的途径。