Octave Marie, Pirotton Laurence, de Cartier d'Yves Emma, Marino Alice, Ambroise Jérôme, Giera Martin, Guigas Bruno, Ginion Audrey, Robaux Valentine, Kuijpers Marijke J E, Baaten Constance C F M J, Heemskerk Johan W M, Nagy Zoltan, Senis Yotis A, Brusa Davide, Bouzin Caroline, Bertrand Luc, Beauloye Christophe, Horman Sandrine
Université catholique de Louvain, Brussels, Belgium.
UCLouvain, Brussels, Belgium.
Blood Adv. 2025 Jul 3. doi: 10.1182/bloodadvances.2025015796.
This study uncovers the pivotal role of acetyl-CoA carboxylase 1 (ACC1) in regulating platelet lipid composition, bioenergetics, activation, and thrombus formation, as demonstrated using a targeted GPIbα-Cre+/- mouse model. By comparing platelet-specific ACC1 knockout mice (pKO; GPIbα-Cre+/- x ACC1flx/flx) with both GPIbα-Cre+/- and ACC1flx/flx control groups, we showed that ACC1 deficiency profoundly reshaped the platelet phospholipidome. Specifically, ACC1 deletion led to decreased levels of arachidonic acid-containing phosphatidylethanolamine plasmalogens, thereby limiting thromboxane A2 synthesis, dense granule secretion, and platelet activation upon agonist stimulation. Bioenergetic analysis of ACC1-deficient platelets revealed reduced glycolytic activity, potentially worsening their activation defects. Notably, ACC1 deficiency also enhanced the mitochondrial reserve respiratory capacity, without altering basal respiration or ATP turnover. This increased reserve respiratory capacity correlated with reduced phosphatidylserine exposure, suggesting lower procoagulant activity. Importantly, we showed that ACC1 deficiency impaired thrombus formation without compromising hemostasis. Together, these findings identified ACC1 as a critical regulator of platelet function and highlighted its potential as a target for innovative anti-thrombotic therapies.
本研究揭示了乙酰辅酶A羧化酶1(ACC1)在调节血小板脂质组成、生物能量学、激活和血栓形成中的关键作用,这是通过使用靶向GPIbα-Cre+/-小鼠模型所证实的。通过将血小板特异性ACC1基因敲除小鼠(pKO;GPIbα-Cre+/- x ACC1flx/flx)与GPIbα-Cre+/-和ACC1flx/flx对照组进行比较,我们发现ACC1缺乏会深刻重塑血小板磷脂组。具体而言,ACC1缺失导致含花生四烯酸的磷脂酰乙醇胺缩醛磷脂水平降低,从而限制了血栓素A2的合成、致密颗粒分泌以及激动剂刺激后血小板的激活。对ACC1缺陷血小板的生物能量学分析显示糖酵解活性降低,这可能会加剧其激活缺陷。值得注意的是,ACC1缺乏还增强了线粒体储备呼吸能力,而不改变基础呼吸或ATP周转。这种增加的储备呼吸能力与磷脂酰丝氨酸暴露减少相关,表明促凝血活性降低。重要的是,我们发现ACC1缺乏会损害血栓形成,但不会影响止血。总之,这些发现确定ACC1是血小板功能的关键调节因子,并突出了其作为创新抗血栓治疗靶点的潜力。