Suppr超能文献

探索伊斯兰堡建成环境中的气候污染物水平及变化:基于自然的可持续排放管理政策框架。

Exploring climate pollutants levels and variations in Islamabad's built-environment: A nature-based policy framework for sustainable emissions management.

作者信息

Qadeer Hajra, Khan Muhammad Usman, Saqib Zafeer, Malik Riffat Naseem

机构信息

Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.

Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan; Lavajet Saudi co, Prince Turki Street, Al Khobar Al Shamaliya, Kingdom of Saudi Arabia.

出版信息

J Environ Manage. 2025 Sep;391:126421. doi: 10.1016/j.jenvman.2025.126421. Epub 2025 Jul 2.

Abstract

The growing energy consumption in Islamabad is escalating temperatures and climate-related risks for residents, exacerbated by the absence of sustainable strategies. Therefore, this study was conducted to probe climate pollutants (carbon dioxide (CO), nitrogen dioxide (NO), ozone (O), and methane (CH)) levels in the built environment of Islamabad. Based on these emissions, a nature-based solutions (NbS) approach was then proposed to manage the identified pollutants from urban developments. Data on electricity consumption (n = 44,792), natural gas usage (n = 33,632), and carbon fluxes were collected to estimate CO emissions, while NO, O, and CH data were obtained from the Sentinel-5P satellite. The NbS policy framework was developed based on a meta-analysis of 345 available studies to extract established NbS reduction effects and community stakeholders survey of 224 participants. The analysis revealed that the residential sector contributed the highest emissions of the target climate pollutants, primarily due to its significantly larger number of units (554,754) within the study area. This was followed by the commercial sector (81,024 units), special residential sector (5576 units), and the industrial sector (2244 units). Among the building heights it was revealed that taller residential buildings (6-30m) exhibited higher emissions of the target climate pollutants (CO: 18 million tons: CH: 58.03 mega mols, NO: 2050 and O: 4109 mol/m) in comparison to the shorter non-residential dwellings (<3-6m) that had comparatively lower emissions (CO: 0.16 million tons, CH:1.71 mega mols, NO: 63 and O: 121 mol/m). Linear regression models predicted that climate pollutants from built-up areas and building heights significantly contributed to rising temperatures (p < 0.001). The comprehensive meta-analysis of available literature and sensitivity analysis of community-driven approach suggested that green routes for residential; green infrastructure for industrial; green facades for special residential; and urban forests for commercial sectors are promising NbS to reduce climate pollutant emissions in these targeted regions. The study highlighted the lack of NbS policy in Islamabad, urging the need for prioritized zoning, integration of social, economic, and ecological indicators, and the adoption of green construction permits and codes to reduce emissions from new developments.

摘要

伊斯兰堡不断增长的能源消耗正在加剧当地居民面临的气温上升和气候相关风险,而缺乏可持续战略则使情况更加恶化。因此,本研究旨在探究伊斯兰堡建成环境中的气候污染物(二氧化碳(CO)、二氧化氮(NO)、臭氧(O)和甲烷(CH))水平。基于这些排放情况,随后提出了一种基于自然的解决方案(NbS)方法,以管理城市发展中识别出的污染物。收集了电力消耗数据(n = 44,792)、天然气使用数据(n = 33,632)和碳通量数据来估算CO排放量,而NO、O和CH数据则从哨兵-5P卫星获取。NbS政策框架是在对345项现有研究进行荟萃分析以提取既定的NbS减排效果以及对2,244名参与者进行社区利益相关者调查的基础上制定的。分析表明,住宅部门贡献了目标气候污染物的最高排放量,主要原因是其在研究区域内的单位数量显著更多(554,754个)。其次是商业部门(81,024个单位)、特殊住宅部门(5,576个单位)和工业部门(2,244个单位)。在建筑高度方面,研究发现,与较矮的非住宅建筑(<3 - 6米)相比,较高的住宅建筑(6 - 3米)排放的目标气候污染物更多(CO:1800万吨;CH:58.03兆摩尔,NO:2050;O:4109摩尔/米),而非住宅建筑的排放量相对较低(CO:16万吨,CH:1.71兆摩尔,NO:63,O:121摩尔/米)。线性回归模型预测,建成区和建筑高度产生的气候污染物对气温上升有显著影响(p < 0.001)。对现有文献进行的综合荟萃分析以及对社区驱动方法的敏感性分析表明,住宅的绿色通道;工业的绿色基础设施;特殊住宅的绿色外墙;以及商业部门的城市森林是有望减少这些目标区域气候污染物排放的基于自然的解决方案。该研究强调了伊斯兰堡缺乏基于自然的解决方案政策,敦促需要进行优先分区,整合社会、经济和生态指标,并采用绿色建筑许可和规范以减少新开发项目的排放。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验