Suppr超能文献

ModelS4呼吸暂停:利用结构化状态空间模型从心电图信号中高效检测睡眠呼吸暂停。

ModelS4Apnea: leveraging structured state space models for efficient sleep apnea detection from ECG signals.

作者信息

Zan Hasan

机构信息

Department of Computer Engineering, Mardin Artuklu University, Mardin, Turkey.

出版信息

Physiol Meas. 2025 Jul 11;46(7). doi: 10.1088/1361-6579/adebdd.

Abstract

. Sleep apnea is a common sleep disorder associated with severe health risks, necessitating accurate and efficient detection methods.. This study proposes ModelS4Apnea, a deep learning framework for sleep apnea detection from electrocardiogram (ECG) spectrograms, integrating structured state space models (S4) for temporal modeling. The framework consists of a convolutional neural network module for local feature extraction, an S4 module for capturing long-range dependencies, and a classification module for final predictions.. The model was trained and evaluated on the Apnea-ECG dataset, achieving an accuracy of 0.933, an1-score of 0.912, a sensitivity of 0.916, and a specificity of 0.944, outperforming most prior studies while maintaining computational efficiency.. Compared to existing methods, ModelS4Apnea provides high classification performance with significantly fewer trainable parameters than long short-term memory-based models, reducing training time and memory consumption. The model's ability to aggregate segment-level predictions enabled perfect per-recording classification, demonstrating its robustness in diagnosing sleep apnea across entire recordings. Moreover, its low memory footprint and fast inference speed make it well-suited for wearable devices, home-based monitoring, and clinical applications, offering a scalable and efficient solution for automated sleep apnea detection. Future work may explore multi-modal data integration, real-world deployment, and further optimizations to enhance its clinical applicability and reliability.

摘要

睡眠呼吸暂停是一种常见的睡眠障碍,伴有严重的健康风险,因此需要准确有效的检测方法。本研究提出了ModelS4Apnea,这是一种用于从心电图(ECG)频谱图中检测睡眠呼吸暂停的深度学习框架,集成了用于时间建模的结构化状态空间模型(S4)。该框架由用于局部特征提取的卷积神经网络模块、用于捕捉长程依赖关系的S4模块以及用于最终预测的分类模块组成。该模型在Apnea-ECG数据集上进行了训练和评估,准确率达到0.933,F1分数为0.912,灵敏度为0.916,特异性为0.944,在保持计算效率的同时优于大多数先前的研究。与现有方法相比,ModelS4Apnea提供了高分类性能,与基于长短期记忆的模型相比,可训练参数显著减少,从而减少了训练时间和内存消耗。该模型聚合段级预测的能力实现了完美的逐记录分类,证明了其在整个记录中诊断睡眠呼吸暂停的稳健性。此外,其低内存占用和快速推理速度使其非常适合可穿戴设备、家庭监测和临床应用,为自动睡眠呼吸暂停检测提供了一种可扩展且高效的解决方案。未来的工作可能会探索多模态数据集成、实际部署和进一步优化,以提高其临床适用性和可靠性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验