Suppr超能文献

基于柱生成的极端途径对非靶向代谢组数据进行新型数据驱动机制建模,揭示了CHO细胞生物过程中饲料成分的影响。

Novel Data-Driven Mechanistic Modeling of Untargeted Metabolome Data Reveals Feed Component Effects in CHO Cell Bioprocess Using Column Generation-Based EFMs.

作者信息

Mäkinen Meeri E-L, Zacharouli Markella, Särnlund Sigrid, Jiang Yun, Chotteau Veronique

机构信息

Competence Centre for Advanced Bioproduction by Continuous Processing, AdBIOPRO, Stockholm, Sweden.

Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Stockholm, Sweden.

出版信息

Biotechnol J. 2025 Jul;20(7):e70008. doi: 10.1002/biot.70008.

Abstract

This study presents a novel approach for applying mechanistic metabolic modeling to untargeted metabolomics data. The approach was applied to the production process of a difficult-to-express enzyme by CHO cells, to identify key feed medium component candidates responsible for improved productivity through feed modification. The exploitation of untargeted metabolomics implies no prior decision of the metabolites or pathways and thus allows screening of metabolic phenomena and bringing an objective perspective. However, such exploitation is challenging due to the high-dimensionality, complexity, relative quantitative information, and high analysis cost of the data, leading to data scarcity. A combination of untargeted metabolomics data exploration and mechanistic modeling was developed to leverage metabolomics data. The study analyzed LC/MS/MS metabolomics data (563 cellular and 386 supernatant metabolites) to determine the key metabolites involved in the productivity increase associated with a feeding modification. The metabolome data was utilized to expand the original stoichiometric reaction network of 127 reactions to 370 reactions. Mechanistic modeling using elementary flux modes-based column generation identified and simulated the underlying metabolic pathways. Twenty-one key metabolites significant for productivity improvement were revealed. This included several unexpected metabolites, such as citraconate and 5-aminovaleric acid, in addition to well-known components, as well as their underlying metabolic pathways. This study offers a novel approach for investigating nutrient supplementation in terms of metabolic fluxes and process performance, paving the way for rational process optimization supported by mechanistic understanding.

摘要

本研究提出了一种将机理代谢模型应用于非靶向代谢组学数据的新方法。该方法应用于CHO细胞生产一种难以表达的酶的过程,以确定通过补料修饰提高生产率的关键补料培养基成分候选物。非靶向代谢组学的应用意味着无需事先确定代谢物或代谢途径,因此可以筛选代谢现象并提供客观的视角。然而,由于数据的高维度、复杂性、相对定量信息和高分析成本,这种应用具有挑战性,导致数据稀缺。开发了一种非靶向代谢组学数据探索与机理建模相结合的方法,以利用代谢组学数据。该研究分析了LC/MS/MS代谢组学数据(563种细胞内代谢物和386种上清液代谢物),以确定与补料修饰相关的生产率提高所涉及的关键代谢物。利用代谢组数据将原始的127个反应的化学计量反应网络扩展到370个反应。使用基于基本通量模式的列生成的机理建模识别并模拟了潜在的代谢途径。揭示了21种对提高生产率有重要意义的关键代谢物。这包括几种意想不到的代谢物,如柠康酸和5-氨基戊酸,以及知名成分及其潜在的代谢途径。本研究提供了一种从代谢通量和过程性能方面研究营养补充的新方法,为基于机理理解的合理过程优化铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e39/12232168/ad14b00862eb/BIOT-20-e70008-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验