Suppr超能文献

基于数据驱动和模型指导的 CHO 细胞培养中培养基开发的系统框架。

Data-driven and model-guided systematic framework for media development in CHO cell culture.

机构信息

Division of Biological Science and Technology, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do, 26493, Republic of Korea.

School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.

出版信息

Metab Eng. 2022 Sep;73:114-123. doi: 10.1016/j.ymben.2022.07.003. Epub 2022 Jul 4.

Abstract

Proposed herein is a systematic media design framework that combines multivariate statistical approaches with in silico analysis of a genome-scale metabolic model of Chinese hamster ovary cell. The framework comprises sequential modules including cell culture and metabolite data collection, multivariate data analysis, in silico modeling and flux prediction, and knowledge-based identification of target media components. Two monoclonal antibody-producing cell lines under two different media conditions were used to demonstrate the applicability of the framework. First, the cell culture and metabolite profiles from all conditions were generated, and then statistically and mechanistically analyzed to explore combinatorial effects of cell line and media on intracellular metabolism. As a result, we found a metabolic bottleneck via a redox imbalance in the TCA cycle in the poorest growth condition, plausibly due to inefficient coenzyme q10-q10h2 recycling. Subsequent in silico simulation allowed us to suggest q10 supplementation to debottleneck the imbalance for the enhanced cellular energy state and TCA cycle activity. Finally, experimental validation was successfully conducted by adding q10 in the media, resulting in increased cell growth. Taken together, the proposed framework rationally identified target nutrients for cell line-specific media design and reformulation, which could greatly improve cell culture performance.

摘要

本文提出了一个系统的介质设计框架,将多元统计方法与中国仓鼠卵巢细胞的基因组规模代谢模型的计算分析相结合。该框架包括顺序模块,包括细胞培养和代谢物数据收集、多元数据分析、计算建模和通量预测,以及基于知识的目标介质成分识别。使用两种在两种不同培养基条件下生产单克隆抗体的细胞系来证明该框架的适用性。首先,生成所有条件下的细胞培养和代谢物谱,然后进行统计和机理分析,以探索细胞系和培养基对细胞内代谢的组合效应。结果,我们发现最差生长条件下 TCA 循环中的氧化还原失衡是一个代谢瓶颈,这可能是由于辅酶 q10-q10h2 循环效率低下所致。随后的计算模拟允许我们建议补充 q10 以消除失衡,从而增强细胞的能量状态和 TCA 循环活性。最后,通过在培养基中添加 q10 进行了成功的实验验证,导致细胞生长增加。总之,所提出的框架合理地确定了针对细胞系特异性培养基设计和配方的目标营养素,这可以极大地提高细胞培养性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验