Suppr超能文献

DiaBD:一个用于孟加拉国强化风险分析与研究的糖尿病数据集。

DiaBD: A diabetes dataset for enhanced risk analysis and research in Bangladesh.

作者信息

Prama Tabia Tanzin, Rahman Md Jobayer, Zaman Marzia, Sarker Farhana, Mamun Khondaker A

机构信息

Advanced Intelligent Multidisciplinary Systems (AIMS) Lab, Institute of Research, Innovation, Incubation, and Commercialization (IRIIC), United International University, Dhaka 1212, Bangladesh.

CMED Health Ltd., Mohakhali DOHS, Dhaka, 1206, Bangladesh.

出版信息

Data Brief. 2025 May 31;61:111746. doi: 10.1016/j.dib.2025.111746. eCollection 2025 Aug.

Abstract

Diabetes is a chronic condition affecting millions worldwide and severely impacts health and quality of life. According to the International Diabetes Federation (IDF), over 463 million adults, which is 9.3% of the global population, live with diabetes. Diabetes ranks among the most prevalent chronic diseases and was the ninth-leading cause of mortality in 2019, with 4.2 million deaths reported. This article introduces DiaBD, a novel dataset of 5,288 patient records from Bangladesh, designed to address critical gaps in diabetes research and aid in healthcare planning, risk analysis, and predictive modelling. The dataset comprises 14 attributes including age, gender, clinical vitals (pulse rate, systolic and diastolic blood pressure, glucose levels), anthropometrics (height, weight, body mass index (BMI)), family history of diabetes and hypertension, cardiovascular disease (CVD), and stroke, with a dependent attribute, Diabetic, indicates whether an individual has diabetes or not. The dataset ensures demographic diversity and precise measurements, supporting the study of diabetes and its related health issues. Features like CVD and stroke enable broader research on comorbidities. This dataset facilitates machine learning applications, risk assessment, and personalized healthcare strategies. Researchers can explore the links between diabetes, hypertension, CVD, and stroke, while healthcare providers and policymakers can leverage DiaBD to identify trends, allocate resources efficiently, and enhance public health strategies.

摘要

糖尿病是一种影响全球数百万人的慢性疾病,严重影响健康和生活质量。根据国际糖尿病联合会(IDF)的数据,全球超过4.63亿成年人患有糖尿病,占全球人口的9.3%。糖尿病是最常见的慢性疾病之一,在2019年是第九大死因,报告死亡人数达420万。本文介绍了DiaBD,这是一个来自孟加拉国的包含5288份患者记录的新型数据集,旨在填补糖尿病研究中的关键空白,并有助于医疗保健规划、风险分析和预测建模。该数据集包含14个属性,包括年龄、性别、临床生命体征(脉搏率、收缩压和舒张压、血糖水平)、人体测量学指标(身高、体重、体重指数(BMI))、糖尿病和高血压家族史、心血管疾病(CVD)和中风,还有一个相关属性“糖尿病患者”,表明个体是否患有糖尿病。该数据集确保了人口统计学多样性和精确测量,支持对糖尿病及其相关健康问题的研究。诸如心血管疾病和中风等特征有助于对合并症进行更广泛的研究。这个数据集便于机器学习应用、风险评估和个性化医疗保健策略。研究人员可以探索糖尿病、高血压、心血管疾病和中风之间的联系,而医疗保健提供者和政策制定者可以利用DiaBD来识别趋势、有效分配资源并加强公共卫生策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d02/12221696/936b0fb626b8/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验