da Silva Rodrigo José, de Resende Bárbara Lana, Comandini Gianni, Lavazza Jacopo, Camanho Pedro P, Scarpa Fabrizio, Panzera Túlio Hallak
CERN, the European Organization for Nuclear Research, R&D Programme EP-DT, Geneva, Switzerland.
Centre for Innovation and Technology in Composite Materials (CITeC), Federal University of São João del-Rei (UFSJ), São João del-Rei, Brazil.
Adv Compos Hybrid Mater. 2025;8(4):288. doi: 10.1007/s42114-025-01359-1. Epub 2025 Jul 1.
The reliance on fossil-derived components in the design of metamaterials and metastructures presents sustainability and environmental challenges, prompting the development of alternative solutions. In response, this study proposes a fully bio-based and modular metastructure composed of rods extracted from the giant bamboo () and plant-based polymeric joints derived from soybean () and castor oil (), aiming to offer a sustainable alternative for load-bearing structural components. The research investigates the design, fabrication, and mechanical performance of a unit trussed cell (50 × 50 × 50 mm) engineered to exhibit auxetic-like chiral rotation and enhanced energy absorption under compressive loading. These cells are assembled into trussed beams (400 × 50 × 50 mm), and further into sandwich beams with 5 mm thick balsa wood skins. Material properties of the bamboo and polymer components are assessed via physical, chemical, and mechanical characterisation to asses their potential chemical-adhesion compatibility, density, and mechanical performance. Following the fabrication of the proposed structures, further experimental evaluation includes compression of the trussed cell and four-point bending of the beam configurations, while finite element analysis (FEA) is used to simulate elastic behaviour under torsional and cantilever loading. Results demonstrate that the metastructure trussed cell (with a mass of ~ 30 g) supports up to 700 kg in compression, achieving ~ 2 mm displacement, 4° rotation, and absorbing ~ 750 μJ/mm of energy; it also exhibits a force-displacement slope of ~ 4,200 N/mm and an equivalent Poisson ratio near zero within the elastic regime (up to ~ 1 mm displacement). The trussed and sandwich beams exhibit equivalent densities of ~ 0.19 and ~ 0.21 g/cm, respectively, while achieving bending loads of ~ 2000 N and ~ 3600 N, corresponding to maximum bending moments of ~ 103 and ~ 188 kN∙mm, and toughness values of ~ 158 and ~ 193 μJ/mm, respectively. Simulated torsional response of the trussed cell indicates a torque of ~ 7,300 N∙mm per degree of twist, while FEA results for cantilever loading show a homogenised flexural modulus of the beams of ~ 623 MPa (trussed) and ~ 751 MPa (sandwich). These outcomes underscore a promising direction for developing renewable, high-strength, and lightweight composite structures, with applications ranging from civil construction to aerospace engineering.
在超材料和超结构设计中对化石衍生成分的依赖带来了可持续性和环境挑战,这促使人们开发替代解决方案。对此,本研究提出了一种完全基于生物的模块化超结构,它由从巨龙竹()中提取的杆和源自大豆()及蓖麻油()的植物基聚合物接头组成,旨在为承重结构部件提供一种可持续的替代方案。该研究调查了一个单元桁架单元(50×50×50毫米)的设计、制造和力学性能,该单元经设计可在压缩载荷下表现出类负泊松比的手性旋转并增强能量吸收。这些单元被组装成桁架梁(400×50×50毫米),并进一步组装成带有5毫米厚轻木蒙皮的夹层梁。通过物理、化学和力学表征评估竹子和聚合物部件的材料性能,以评估它们潜在的化学粘附兼容性、密度和力学性能。在所提出结构制造完成后,进一步的实验评估包括对桁架单元的压缩和梁构型的四点弯曲,同时使用有限元分析(FEA)来模拟扭转和悬臂加载下的弹性行为。结果表明,超结构桁架单元(质量约为30克)在压缩时可支撑高达700千克,实现约2毫米的位移、4°的旋转,并吸收约750微焦/毫米的能量;它在弹性范围内(位移高达约1毫米)还表现出约4200牛/毫米的力-位移斜率和接近零的等效泊松比。桁架梁和夹层梁的等效密度分别约为0.19克/立方厘米和0.21克/立方厘米,同时实现了约2000牛和约3600牛的弯曲载荷,分别对应约103千牛·毫米和约188千牛·毫米的最大弯矩,以及分别约为158微焦/毫米和约193微焦/毫米的韧性值。桁架单元的模拟扭转响应表明每扭转一度的扭矩约为7300牛·毫米,而悬臂加载的有限元分析结果显示梁的均匀弯曲模量约为623兆帕(桁架梁)和约751兆帕(夹层梁)。这些结果突出了开发可再生、高强度和轻质复合结构的一个有前景的方向,其应用范围从民用建筑到航空航天工程。