Zeng Zhi, Yu Yin-Kai, Li Zhi-Xuan, Li Zi-Xiang, Yin Shuai
Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-Sen University, Guangzhou, 510275, China.
School of Physics, Sun Yat-Sen University, Guangzhou, 510275, China.
Nat Commun. 2025 Jul 4;16(1):6181. doi: 10.1038/s41467-025-61611-6.
The conventional Kibble-Zurek mechanism and the finite-time scaling provide universal descriptions of the driven critical dynamics from gapped initial states based on the adiabatic-impulse scenario. Here we investigate the driven critical dynamics in two-dimensional Dirac systems, which harbor semimetal and Mott insulator phases separated by the quantum critical point triggered by the interplay between fluctuations of gapless Dirac fermions and order parameter bosons. We find that despite the existence of the gapless initial phase, the driven dynamics can still be captured by the finite-time scaling form. This leads us to propose a criterion for the validity of Kibble-Zurek mechanism with a gapless initial state. Accordingly, our results generalize the Kibble-Zurek theory to incorporate composite fluctuations and relax its requirement for a gapped initial state to systems accommodating gapless Dirac fermionic excitations. Our work not only brings fundamental perspective into the nonequilibrium critical dynamics, but also provides an approach to fathom quantum critical properties in fermionic systems.
传统的基布尔-祖雷克机制和有限时间标度基于绝热脉冲情景,为从带隙初始态的驱动临界动力学提供了通用描述。在此,我们研究二维狄拉克系统中的驱动临界动力学,该系统包含由无隙狄拉克费米子涨落与序参量玻色子相互作用触发的量子临界点分隔的半金属相和莫特绝缘相。我们发现,尽管存在无隙初始相,但驱动动力学仍可由有限时间标度形式捕捉。这使我们提出了一个关于具有无隙初始态的基布尔-祖雷克机制有效性的判据。相应地,我们的结果将基布尔-祖雷克理论推广到包含复合涨落的情况,并放宽了其对带隙初始态的要求,使其适用于容纳无隙狄拉克费米子激发的系统。我们的工作不仅为非平衡临界动力学带来了基本观点,还提供了一种深入了解费米子系统中量子临界性质的方法。