Suppr超能文献

核密度估计:一种用于可视化冬季两项训练强度分布的新工具。

Kernel Density Estimation: a novel tool for visualising training intensity distribution in biathlon.

作者信息

Staunton Craig A, Kårström Andreas, Kock Hannes, Laaksonen Marko S, Björklund Glenn

机构信息

Department of Health Sciences, Swedish Winter Sports Research Centre, Mid Sweden University, Östersund, Sweden.

Department of Environmental and Bioscience, School of Business, Innovation and Sustainability, Halmstad University, Halmstad, Sweden.

出版信息

Front Sports Act Living. 2025 Jun 20;7:1546909. doi: 10.3389/fspor.2025.1546909. eCollection 2025.

Abstract

PURPOSE

This study introduces two-dimensional (2D) Kernel Density Estimation (KDE) plots as a novel tool for visualising Training Intensity Distribution (TID) in biathlon. The goal was to assess how KDE plots, alongside traditional training metrics, might provide a more detailed understanding of heart rate (HR) intensity patterns, aiding in the evaluation of training quality and compliance.

METHODS

Fifteen elite-level youth biathletes from two national academy programmes were monitored over 5-6 weeks using HR monitors. Training sessions were measured via time-in-zone (TIZ) within a five-zone HR model with any time accumulated below the threshold for Zone 1, considered Zone 0. Sessions were dichotomised into those planned as low-intensity training (LIT) or those planned with high-intensity training (HIT). KDE analyses were conducted in MATLAB (Version R2020b) using the "" function to create 2D KDE plots that visualise HR intensity accumulation across each programme, session type (e.g., Low-intensity training: LIT; High-intensity training: HIT), and individual athlete responses. Traditional histogram plots and grouped bar charts were also used for comparison.

RESULTS

For LIT sessions, athletes performed less time in Zone 1 than planned, while performed time exceeded planned time in Zone 2. For HIT sessions, performed time in Zone 5 was lower than planned. All sessions contained unplanned time in Zone 0. The 2D KDE plots provided a continuous and detailed representation of HR intensity accumulation throughout training sessions, revealing patterns and intensity fluctuations that complement traditional TIZ analyses.

CONCLUSIONS

2D KDE plots might serve as a valuable complementary tool for assessing TID in biathlon, offering a more nuanced and continuous view of HR intensity. By identifying discrepancies between planned and performed training intensity, coaches can refine strategies and provide individualised feedback. Incorporating KDE plots into training monitoring could improve training alignment, helping reduce overtraining or undertraining risks and optimising athlete development.

摘要

目的

本研究引入二维(2D)核密度估计(KDE)图作为一种可视化冬季两项运动中训练强度分布(TID)的新工具。目标是评估KDE图与传统训练指标一起,如何能更详细地理解心率(HR)强度模式,有助于评估训练质量和合规性。

方法

使用心率监测器对来自两个国家学院项目的15名精英级青年冬季两项运动员进行了5 - 6周的监测。训练课程通过五区心率模型中的分区时间(TIZ)进行测量,任何低于1区阈值的累计时间被视为0区。课程被分为计划为低强度训练(LIT)的课程或计划为高强度训练(HIT)的课程。使用MATLAB(版本R2020b)中的“”函数进行KDE分析,以创建2D KDE图,可视化每个项目、课程类型(例如,低强度训练:LIT;高强度训练:HIT)和个体运动员反应的心率强度积累情况。还使用传统的直方图和分组条形图进行比较。

结果

对于LIT课程,运动员在1区的时间比计划的少,而在2区的执行时间超过了计划时间。对于HIT课程,5区的执行时间低于计划时间。所有课程都包含0区的非计划时间。2D KDE图提供了整个训练课程中心率强度积累的连续和详细表示,揭示了补充传统TIZ分析的模式和强度波动。

结论

2D KDE图可能是评估冬季两项运动中TID的有价值的补充工具,提供更细致入微和连续的心率强度视图。通过识别计划训练强度与实际训练强度之间的差异,教练可以完善策略并提供个性化反馈。将KDE图纳入训练监测可以改善训练一致性方案,有助于降低过度训练或训练不足的风险,并优化运动员的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec97/12226983/da887046f57f/fspor-07-1546909-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验