Suppr超能文献

绕过尖峰分类:基于密度的解码,利用来自密集多电极探针的尖峰定位

Bypassing spike sorting: Density-based decoding using spike localization from dense multielectrode probes.

作者信息

Zhang Yizi, He Tianxiao, Boussard Julien, Windolf Charlie, Winter Olivier, Trautmann Eric, Roth Noam, Barrell Hailey, Churchland Mark, Steinmetz Nicholas A, Varol Erdem, Hurwitz Cole, Paninski Liam

机构信息

Columbia University.

New York University.

出版信息

Adv Neural Inf Process Syst. 2023;36:77604-77631.

Abstract

Neural decoding and its applications to brain computer interfaces (BCI) are essential for understanding the association between neural activity and behavior. A prerequisite for many decoding approaches is , the assignment of action potentials (spikes) to individual neurons. Current spike sorting algorithms, however, can be inaccurate and do not properly model uncertainty of spike assignments, therefore discarding information that could potentially improve decoding performance. Recent advances in high-density probes (e.g., Neuropixels) and computational methods now allow for extracting a rich set of spike features from unsorted data; these features can in turn be used to directly decode behavioral correlates. To this end, we propose a spike sorting-free decoding method that directly models the distribution of extracted spike features using a mixture of Gaussians (MoG) encoding the uncertainty of spike assignments, without aiming to solve the spike clustering problem explicitly. We allow the mixing proportion of the MoG to change over time in response to the behavior and develop variational inference methods to fit the resulting model and to perform decoding. We benchmark our method with an extensive suite of recordings from different animals and probe geometries, demonstrating that our proposed decoder can consistently outperform current methods based on thresholding (i.e. multi-unit activity) and spike sorting. Open source code is available at https://github.com/yzhang511/density_decoding.

摘要

神经解码及其在脑机接口(BCI)中的应用对于理解神经活动与行为之间的关联至关重要。许多解码方法的一个前提是将动作电位(尖峰)分配给单个神经元。然而,当前的尖峰分类算法可能不准确,并且不能正确地对尖峰分配的不确定性进行建模,因此会丢弃可能提高解码性能的信息。高密度探针(例如Neuropixels)和计算方法的最新进展现在允许从未分类的数据中提取丰富的尖峰特征集;这些特征反过来可用于直接解码行为相关性。为此,我们提出了一种无需尖峰分类的解码方法,该方法使用编码尖峰分配不确定性的高斯混合模型(MoG)直接对提取的尖峰特征的分布进行建模,而无需明确解决尖峰聚类问题。我们允许MoG的混合比例随时间根据行为变化,并开发变分推理方法来拟合所得模型并进行解码。我们使用来自不同动物和探针几何形状的大量记录对我们的方法进行基准测试,表明我们提出的解码器始终优于基于阈值处理(即多单元活动)和尖峰分类的当前方法。开源代码可在https://github.com/yzhang511/density_decoding获取。

相似文献

2
Bypassing spike sorting: Density-based decoding using spike localization from dense multielectrode probes.
bioRxiv. 2023 Sep 22:2023.09.21.558869. doi: 10.1101/2023.09.21.558869.
4
123I-MIBG scintigraphy and 18F-FDG-PET imaging for diagnosing neuroblastoma.
Cochrane Database Syst Rev. 2015 Sep 29;2015(9):CD009263. doi: 10.1002/14651858.CD009263.pub2.
7
Adapting Safety Plans for Autistic Adults with Involvement from the Autism Community.
Autism Adulthood. 2025 May 28;7(3):293-302. doi: 10.1089/aut.2023.0124. eCollection 2025 Jun.
8
Using transient, effector-specific neural responses to gate decoding for brain-computer interfaces.
J Neural Eng. 2025 Feb 11;22(1):016036. doi: 10.1088/1741-2552/adaa1f.

引用本文的文献

1
Exploiting correlations across trials and behavioral sessions to improve neural decoding.
bioRxiv. 2024 Oct 10:2024.09.14.613047. doi: 10.1101/2024.09.14.613047.

本文引用的文献

1
Large-scale high-density brain-wide neural recording in nonhuman primates.
Nat Neurosci. 2025 Jun 23. doi: 10.1038/s41593-025-01976-5.
2
Reproducibility of in vivo electrophysiological measurements in mice.
Elife. 2025 May 12;13:RP100840. doi: 10.7554/eLife.100840.
3
ROBUST ONLINE MULTIBAND DRIFT ESTIMATION IN ELECTROPHYSIOLOGY DATA.
Proc IEEE Int Conf Acoust Speech Signal Process. 2023 Jun;2023. doi: 10.1109/icassp49357.2023.10095487. Epub 2023 May 5.
4
Flexible neural control of motor units.
Nat Neurosci. 2022 Nov;25(11):1492-1504. doi: 10.1038/s41593-022-01165-8. Epub 2022 Oct 10.
5
Large-scale neural recordings with single neuron resolution using Neuropixels probes in human cortex.
Nat Neurosci. 2022 Feb;25(2):252-263. doi: 10.1038/s41593-021-00997-0. Epub 2022 Jan 31.
6
Large-scale neural recordings call for new insights to link brain and behavior.
Nat Neurosci. 2022 Jan;25(1):11-19. doi: 10.1038/s41593-021-00980-9. Epub 2022 Jan 3.
7
Hippocampal replay of experience at real-world speeds.
Elife. 2021 Sep 27;10:e64505. doi: 10.7554/eLife.64505.
8
Standardized and reproducible measurement of decision-making in mice.
Elife. 2021 May 20;10:e63711. doi: 10.7554/eLife.63711.
9
Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings.
Science. 2021 Apr 16;372(6539). doi: 10.1126/science.abf4588.
10
Deep learning approaches for neural decoding across architectures and recording modalities.
Brief Bioinform. 2021 Mar 22;22(2):1577-1591. doi: 10.1093/bib/bbaa355.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验