Suppr超能文献

了解埃塞俄比亚经处理蚊帐使用情况的决定因素:一种使用埃塞俄比亚2023年人口与健康调查数据的机器学习分类方法。

Understanding the determinants of treated bed net use in Ethiopia: A machine learning classification approach using PMA Ethiopia 2023 survey data.

作者信息

Mengistu Abraham Keffale

机构信息

Department of Health Informatics, College of Medicine Health Science, Debre Markos University, Debre Markos, Ethiopia.

出版信息

PLoS One. 2025 Jul 7;20(7):e0327800. doi: 10.1371/journal.pone.0327800. eCollection 2025.

Abstract

INTRODUCTION

Malaria remains a significant public health challenge in Ethiopia, with over 7.3 million cases and 1,157 deaths reported between January 1 and October 20, 2024. Despite extensive distribution campaigns, 35% of insecticide-treated nets (ITNs) remain underutilized, hindering malaria control efforts. Traditional statistical approaches have identified socioeconomic and demographic factors as predictors of ITN use, but often fail to capture complex, nonlinear interactions. This study applies machine learning to identify non-apparent factors of ITN utilization and investigates its performance in prediction as compared to traditional logistic regression.

METHODS

This study applied ML models, including Random Forest, XGBoost, and Gradient Boosting, to predict ITN utilization using the 2023 Performance Monitoring for Action (PMA) Ethiopia dataset, a nationally representative survey of 9,763 households. The dataset included 18 variables: region, household size, wealth quintile, and housing conditions. Model performance was evaluated using accuracy, precision, recall, F1-score, and AUC-ROC. The values of SHAP (Shapley Additive Explanations) were used to interpret feature importance and interaction effects.

RESULTS

Random Forest and XGBoost outperformed traditional logistic regression, achieving AUC scores of 0.89(0.91 after optimization) and 0.88, respectively. Key determinants of ITN utilization included geographic region, household size, wealth quintile, and maternal education. Nonlinear interactions, such as the moderating effect of maternal education on income-related barriers, were identified. Regional disparities were evident, with Amhara and Oromia showing higher ITN Utilization compared to urban areas like Harari and Dire Dawa. Middle-income households exhibited the highest ITN usage (23.7%), challenging the assumption of linear wealth gradients.

CONCLUSION

This study demonstrates the superiority of machine learning (ML) models in capturing complex, nonlinear determinants of ITN utilization, providing actionable insights for targeted malaria prevention strategies. Findings underscore the need for region-specific interventions, integration of ITN distribution with educational and economic empowerment programs, and synergies with environmental health improvements. The study highlights the potential of ML to enhance precision in public health in resource-limited settings, contributing to Ethiopia's National Malaria Elimination Roadmap and global malaria eradication efforts.

摘要

引言

疟疾仍然是埃塞俄比亚一项重大的公共卫生挑战,在2024年1月1日至10月20日期间报告了超过730万例病例和1157例死亡。尽管开展了广泛的分发运动,但35%的经杀虫剂处理的蚊帐(ITN)仍未得到充分利用,阻碍了疟疾防控工作。传统统计方法已将社会经济和人口因素确定为ITN使用情况的预测因素,但往往无法捕捉复杂的非线性相互作用。本研究应用机器学习来识别ITN使用情况的非显性因素,并与传统逻辑回归相比,研究其预测性能。

方法

本研究应用包括随机森林、XGBoost和梯度提升在内的机器学习模型,使用2023年埃塞俄比亚行动绩效监测(PMA)数据集预测ITN使用情况,该数据集是对9763户家庭进行的具有全国代表性的调查。该数据集包括18个变量:地区、家庭规模、财富五分位数和住房条件。使用准确率、精确率、召回率、F1分数和AUC-ROC评估模型性能。SHAP(Shapley加法解释)值用于解释特征重要性和相互作用效应。

结果

随机森林和XGBoost的表现优于传统逻辑回归,AUC得分分别为0.89(优化后为0.91)和0.88。ITN使用情况的关键决定因素包括地理区域、家庭规模、财富五分位数和母亲教育程度。识别出了非线性相互作用,如母亲教育程度对与收入相关障碍的调节作用。地区差异明显,阿姆哈拉和奥罗米亚的ITN使用率高于哈勒里和德雷达瓦等城市地区。中等收入家庭的ITN使用率最高(23.7%),这对线性财富梯度的假设提出了挑战。

结论

本研究证明了机器学习(ML)模型在捕捉ITN使用情况的复杂非线性决定因素方面的优越性,为有针对性的疟疾预防策略提供了可操作的见解。研究结果强调了针对特定地区进行干预的必要性、将ITN分发与教育和经济赋权计划相结合,以及与改善环境卫生协同合作。该研究突出了ML在资源有限环境中提高公共卫生精准度的潜力,为埃塞俄比亚的国家疟疾消除路线图和全球疟疾根除努力做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e64/12233236/de32808595bb/pone.0327800.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验