Suppr超能文献

用于前列腺活检诊断评估的人工智能系统的开发与回顾性验证:研究方案

Development and retrospective validation of an artificial intelligence system for diagnostic assessment of prostate biopsies: study protocol.

作者信息

Mulliqi Nita, Blilie Anders, Ji Xiaoyi, Szolnoky Kelvin, Olsson Henrik, Titus Matteo, Martinez Gonzalez Geraldine, Boman Sol Erika, Valkonen Masi, Gudlaugsson Einar, Kjosavik Svein Reidar, Asenjo José, Gambacorta Marcello, Libretti Paolo, Braun Marcin, Kordek Radzislaw, Łowicki Roman, Hotakainen Kristina, Väre Päivi, Pedersen Bodil Ginnerup, Sørensen Karina Dalsgaard, Ulhøi Benedicte Parm, Rantalainen Mattias, Ruusuvuori Pekka, Delahunt Brett, Samaratunga Hemamali, Tsuzuki Toyonori, Janssen Emilius Adrianus Maria, Egevad Lars, Kartasalo Kimmo, Eklund Martin

机构信息

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.

Department of Pathology, Stavanger University Hospital, Stavanger, Norway.

出版信息

BMJ Open. 2025 Jul 7;15(7):e097591. doi: 10.1136/bmjopen-2024-097591.

Abstract

INTRODUCTION

Histopathological evaluation of prostate biopsies using the Gleason scoring system is critical for prostate cancer diagnosis and treatment selection. However, grading variability among pathologists can lead to inconsistent assessments, risking inappropriate treatment. Similar challenges complicate the assessment of other prognostic features like cribriform cancer morphology and perineural invasion. Many pathology departments are also facing an increasingly unsustainable workload due to rising prostate cancer incidence and a decreasing pathologist workforce coinciding with increasing requirements for more complex assessments and reporting. Digital pathology and artificial intelligence (AI) algorithms for analysing whole slide images show promise in improving the accuracy and efficiency of histopathological assessments. Studies have demonstrated AI's capability to diagnose and grade prostate cancer comparably to expert pathologists. However, external validations on diverse data sets have been limited and often show reduced performance. Historically, there have been no well-established guidelines for AI study designs and validation methods. Diagnostic assessments of AI systems often lack preregistered protocols and rigorous external cohort sampling, essential for reliable evidence of their safety and accuracy.

METHODS AND ANALYSIS

This study protocol covers the retrospective validation of an AI system for prostate biopsy assessment. The primary objective of the study is to develop a high-performing and robust AI model for diagnosis and Gleason scoring of prostate cancer in core needle biopsies, and at scale evaluate whether it can generalise to fully external data from independent patients, pathology laboratories and digitalisation platforms. The secondary objectives cover AI performance in estimating cancer extent and detecting cribriform prostate cancer and perineural invasion. This protocol outlines the steps for data collection, predefined partitioning of data cohorts for AI model training and validation, model development and predetermined statistical analyses, ensuring systematic development and comprehensive validation of the system. The protocol adheres to Transparent Reporting of a multivariable prediction model of Individual Prognosis Or Diagnosis+AI (TRIPOD+AI), Protocol Items for External Cohort Evaluation of a Deep Learning System in Cancer Diagnostics (PIECES), Checklist for AI in Medical Imaging (CLAIM) and other relevant best practices.

ETHICS AND DISSEMINATION

Data collection and usage were approved by the respective ethical review boards of each participating clinical laboratory, and centralised anonymised data handling was approved by the Swedish Ethical Review Authority. The study will be conducted in agreement with the Helsinki Declaration. The findings will be disseminated in peer-reviewed publications (open access).

摘要

引言

使用 Gleason 评分系统对前列腺活检进行组织病理学评估对于前列腺癌的诊断和治疗选择至关重要。然而,病理学家之间的分级差异可能导致评估不一致,有进行不适当治疗的风险。类似的挑战也使其他预后特征的评估变得复杂,如筛状癌形态和神经周围浸润。由于前列腺癌发病率上升、病理学家劳动力减少,同时对更复杂评估和报告的要求增加,许多病理科也面临着日益难以为继的工作量。用于分析全切片图像的数字病理学和人工智能(AI)算法在提高组织病理学评估的准确性和效率方面显示出前景。研究表明,人工智能诊断和分级前列腺癌的能力与专业病理学家相当。然而,对不同数据集的外部验证有限,且往往表现出性能下降。从历史上看,对于人工智能研究设计和验证方法没有完善的指南。人工智能系统的诊断评估往往缺乏预先注册的方案和严格的外部队列抽样,而这对于其安全性和准确性的可靠证据至关重要。

方法与分析

本研究方案涵盖了对用于前列腺活检评估的人工智能系统的回顾性验证。该研究的主要目标是开发一个高性能且稳健的人工智能模型,用于在核心针吸活检中对前列腺癌进行诊断和 Gleason 评分,并大规模评估它是否能够推广到来自独立患者、病理实验室和数字化平台的完全外部数据。次要目标包括人工智能在估计癌症范围以及检测筛状前列腺癌和神经周围浸润方面的性能。本方案概述了数据收集步骤、为人工智能模型训练和验证对数据队列进行的预定义划分、模型开发以及预定的统计分析,确保系统的系统开发和全面验证。该方案遵循个体预后或诊断多变量预测模型的透明报告+人工智能(TRIPOD+AI)、癌症诊断中深度学习系统的外部队列评估协议项目(PIECES)、医学成像中人工智能清单(CLAIM)以及其他相关最佳实践。

伦理与传播

数据收集和使用获得了每个参与临床实验室各自的伦理审查委员会的批准,集中式匿名数据处理获得了瑞典伦理审查局的批准。该研究将按照《赫尔辛基宣言》进行。研究结果将在同行评审出版物(开放获取)中传播。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92b4/12258300/ff95e6191535/bmjopen-15-7-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验