Alqhtani Manal, Shahbaz Afifa, Abbas Muhammad, Saad Khaled M, Birhanu Asnake, Yousaf Muhammad Zain
Department of Mathematics, College of Sciences and Arts, Najran University, Najran, Saudi Arabia.
Department of Mathematics, University of Sargodha, 40100, Sargodha, Pakistan.
Sci Rep. 2025 Jul 7;15(1):24185. doi: 10.1038/s41598-025-06300-6.
The stochastic chiral nonlinear Schrödinger equation has real life applications in developing advanced optical communication systems, involving description of wave propagation in noisy, chiral fiber networks. In the present study, the [Formula: see text]-dimensional stochastic chiral nonlinear Schrödinger equation is investigated using two different formats of the generalized Kudryashov method. A variety of soliton solutions, such as kink, anti-kink, periodic, M-shaped, W-shaped, and V-shaped patterns, are derived, showing the graphical behavior of the system. Achieved solutions are verified with the use of Mathematica software. For further investigation to these solutions, 2D, 3D, and contour graphs are shown to graphically represent the corresponding solutions. Moreover, Bifurcation analysis is performed to investigate the qualitative changes in the dynamics of the system. Chaotic behaviour and sensitivity analysis are also investigated, highlighting the stochastic system's complexity. Additional determination of chaotic paths is carried out by 2D and 3D graphs and time series analysis. The findings provide valuable theoretical insights into chiral nonlinear systems under unexpected causes and provide useful analytical methods and visual models for future studies in nonlinear wave propagation, optical physics, and complex dynamical systems.
随机手性非线性薛定谔方程在先进光通信系统的开发中具有实际应用,涉及对噪声手性光纤网络中波传播的描述。在本研究中,使用广义 Kudryashov 方法的两种不同形式研究了[公式:见原文]维随机手性非线性薛定谔方程。推导了各种孤子解,如扭结、反扭结、周期、M 形、W 形和 V 形模式,展示了系统的图形行为。使用 Mathematica 软件对得到的解进行了验证。为了对这些解进行进一步研究,展示了二维、三维和等高线图以图形方式表示相应的解。此外,进行了分岔分析以研究系统动力学的定性变化。还研究了混沌行为和敏感性分析,突出了随机系统的复杂性。通过二维和三维图以及时间序列分析对混沌路径进行了额外的确定。这些发现为意外情况下的手性非线性系统提供了有价值的理论见解,并为未来非线性波传播、光学物理和复杂动力系统的研究提供了有用的分析方法和可视化模型。