Suppr超能文献

基于细粒度增强和Swin Transformer的低分辨率遥感目标检测

Low resolution remote sensing object detection with fine grained enhancement and swin transformer.

作者信息

Xu Zhijing, Wang Xin, Huang Kan, Chen Ren

机构信息

College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China.

State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China.

出版信息

Sci Rep. 2025 Jul 7;15(1):24183. doi: 10.1038/s41598-025-10286-6.

Abstract

Object detection in remote sensing images is a highly complex and challenging task. Remote sensing images typically suffer from issues such as small target sizes and densely distributed targets. Existing object detection algorithms often underperform in such scenarios due to their limited capability in handling fine-grained details and multi-scale objects. To address the persistent challenges in remote sensing image object detection, this study introduces a novel detection framework comprising three key innovations. First, we propose the Fine-grained Enhanced Downsampling Network (FEDNet) as the feature extraction backbone, specifically designed to preserve critical target information during downsampling through enhanced fine-grained feature representation. Second, we develop the Swin Transformer-based Progressive Aggregation Network (STPANet), which integrates Swin Transformer Blocks into the C3CST module to achieve superior multi-scale feature fusion while simultaneously capturing global contextual information and local spatial details. Finally, we incorporate the Shape-IoU loss function to optimize bounding box regression, significantly improving small target detection accuracy while maintaining computational efficiency. Experimental results demonstrate that the proposed method achieves outstanding performance on the DOTA and DIOR datasets, with mean average precision (mAP@50) scores of 69.9% and 85.5%, respectively. These results highlight its superior detection performance under low-resolution conditions.

摘要

遥感图像中的目标检测是一项极具复杂性和挑战性的任务。遥感图像通常存在诸如目标尺寸小和目标分布密集等问题。现有的目标检测算法由于在处理细粒度细节和多尺度目标方面能力有限,在这种场景下往往表现不佳。为了解决遥感图像目标检测中持续存在的挑战,本研究引入了一个包含三项关键创新的新型检测框架。首先,我们提出了细粒度增强下采样网络(FEDNet)作为特征提取主干,专门设计用于通过增强细粒度特征表示在降采样过程中保留关键目标信息。其次,我们开发了基于Swin Transformer的渐进聚合网络(STPANet),它将Swin Transformer块集成到C3CST模块中,以实现卓越的多尺度特征融合,同时捕获全局上下文信息和局部空间细节。最后,我们引入Shape-IoU损失函数来优化边界框回归,在保持计算效率的同时显著提高小目标检测精度。实验结果表明,所提出的方法在DOTA和DIOR数据集上取得了优异的性能,平均精度均值(mAP@50)分数分别为69.9%和85.5%。这些结果突出了其在低分辨率条件下的卓越检测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ee/12234673/8b9d76c8d869/41598_2025_10286_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验