Bizzozero Sara, Bassani Tito, Sconfienza Luca Maria, Messina Carmelo, Bonato Matteo, Inzaghi Cecilia, Marmondi Federica, Cinque Paola, Banfi Giuseppe, Borghi Stefano
IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy.
Eur Radiol Exp. 2025 Jul 7;9(1):64. doi: 10.1186/s41747-025-00606-w.
Aging alters musculoskeletal structure and function, affecting muscle mass, composition, and strength, increasing the risk of falls and loss of independence in older adults. This study assessed cross-sectional area (CSA) and fat infiltration (FI) of six thigh muscles through a validated deep learning model. Gender differences and correlations between fat, muscle parameters, and age were also analyzed.
We retrospectively analyzed 141 participants (67 females, 74 males) aged 52-82 years. Participants underwent magnetic resonance imaging (MRI) scans of the right thigh and dual-energy x-ray absorptiometry to determine appendicular skeletal muscle mass index (ASMMI) and body fat percentage (FAT%). A deep learning-based application was developed to automate the segmentation of six thigh muscle groups.
Deep learning model accuracy was evaluated using the "intersection over union" (IoU) metric, with average IoU values across muscle groups ranging from 0.84 to 0.99. Mean CSA was 10,766.9 mm² (females 8,892.6 mm², males 12,463.9 mm², p < 0.001). The mean FI value was 14.92% (females 17.42%, males 12.62%, p < 0.001). Males showed larger CSA and lower FI in all thigh muscles compared to females. Positive correlations were identified in females between the FI of posterior thigh muscle groups (biceps femoris, semimembranosus, and semitendinosus) and age (r or ρ = 0.35-0.48; p ≤ 0.004), while no significant correlations were observed between CSA, ASMMI, or FAT% and age.
Deep learning accurately quantifies muscle CSA and FI, reducing analysis time and human error. Aging impacts on muscle composition and distribution and gender-specific assessments in older adults is needed.
Efficient deep learning-based MRI image segmentation to assess the composition of six thigh muscle groups in over 50 individuals revealed gender differences in thigh muscle CSA and FI. These findings have potential clinical applications in assessing muscle quality, decline, and frailty.
Deep learning model enhanced MRI segmentation, providing high assessment accuracy. Significant gender differences in cross-sectional area and fat infiltration across all thigh muscles were observed. In females, fat infiltration of the posterior thigh muscles was positively correlated with age.
衰老会改变肌肉骨骼结构和功能,影响肌肉质量、组成和力量,增加老年人跌倒和失去独立生活能力的风险。本研究通过一个经过验证的深度学习模型评估了六块大腿肌肉的横截面积(CSA)和脂肪浸润(FI)。还分析了性别差异以及脂肪、肌肉参数与年龄之间的相关性。
我们回顾性分析了141名年龄在52 - 82岁之间的参与者(67名女性,74名男性)。参与者接受了右大腿的磁共振成像(MRI)扫描和双能X线吸收法检查,以确定四肢骨骼肌质量指数(ASMMI)和体脂百分比(FAT%)。开发了一种基于深度学习的应用程序来自动分割六组大腿肌肉。
使用“交并比”(IoU)指标评估深度学习模型的准确性,各肌肉组的平均IoU值在0.84至0.99之间。平均CSA为10766.9平方毫米(女性为8892.6平方毫米,男性为12463.9平方毫米,p < 0.001)。平均FI值为14.92%(女性为17.42%,男性为12.62%,p < 0.001)。与女性相比,男性所有大腿肌肉的CSA更大,FI更低。在女性中,大腿后肌群(股二头肌、半膜肌和半腱肌)的FI与年龄呈正相关(r或ρ = 0.35 - 0.48;p≤0.004),而CSA、ASMMI或FAT%与年龄之间未观察到显著相关性。
深度学习能够准确量化肌肉CSA和FI,减少分析时间和人为误差。衰老会影响肌肉组成和分布,需要对老年人进行针对性别的评估。
基于深度学习的高效MRI图像分割用于评估50多名个体的六组大腿肌肉组成,揭示了大腿肌肉CSA和FI的性别差异。这些发现在评估肌肉质量、衰退和虚弱方面具有潜在的临床应用价值。
深度学习模型增强了MRI分割,提供了高评估准确性。观察到所有大腿肌肉在横截面积和脂肪浸润方面存在显著性别差异。在女性中,大腿后肌群的脂肪浸润与年龄呈正相关。