Haldar Indrajit, Taneja Vaishali, Goyal Naveen, Ubaid Mohammad, Sarkar Debattam, Kedia Dinesh Kumar, Saurabh Kumar, Singh Surjeet, Pal Koushik, Ravishankar N, Biswas Kanishka
New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore, 560064, India.
Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India.
Angew Chem Int Ed Engl. 2025 Sep 1;64(36):e202510305. doi: 10.1002/anie.202510305. Epub 2025 Jul 21.
n-type lead chalcogenides showing high thermoelectric performance are rare due to the larger energy offset between the two lowest energy conduction bands minima, leaving ample opportunity to modulate electronic structure for improving their thermoelectric performance. Here, we present a remarkable thermoelectric figure of merit (zT) of ∼1.8 at 873 K in n-type PbSe doped with MoCl by modulation of the conduction bands, while simultaneously suppressing the phonon transport. Doping MoCl in PbSe induces notable convergence of conduction bands and an increased density of states near the Fermi level, mainly due to the contribution of Mo 4d orbital hybridized with the Se 4p-Pb 6p. This results in an improved Seebeck coefficient, despite maintaining a high n-type charge carrier concentration resulting in an excellent power factor (σS) of ∼21 µW cm K at 873 K for PbSe + 1 mol% MoCl. When the solid solution limit of the doping exceeds, it forms unique modular nano-heterostructures (5-30 nm) of PbSe-MoSe misfit layered compounds embedded in PbSe matrix. These nano-heterostructures significantly intensify phonon scattering, leading to an ultralow lattice thermal conductivity (κ) of 0.20 W m K at ∼725 K in PbSe + 1 mol% MoCl sample.
由于两个最低能量导带最小值之间的能量偏移较大,具有高热电性能的n型铅硫族化物很少见,这为调节电子结构以提高其热电性能留下了充足的空间。在此,我们通过调节导带,同时抑制声子输运,在掺杂MoCl的n型PbSe中于873 K时呈现出约1.8的显著热电优值(zT)。在PbSe中掺杂MoCl会导致导带显著收敛以及费米能级附近态密度增加,这主要归因于Mo 4d轨道与Se 4p - Pb 6p杂化的贡献。尽管保持了高n型电荷载流子浓度,但这导致了塞贝克系数的提高,使得PbSe + 1 mol% MoCl在873 K时具有约21 μW cm K的优异功率因子(σS)。当掺杂的固溶体极限超过时,会形成嵌入PbSe基体中的PbSe - MoSe错配层状化合物的独特模块化纳米异质结构(5 - 30 nm)。这些纳米异质结构显著增强了声子散射,导致PbSe + 1 mol% MoCl样品在约725 K时具有0.20 W m K的超低晶格热导率(κ)。