Romero Alejandra Montaño, Yovanno Remy A, Lau Albert Y, Twomey Edward C
Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD USA.
Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD USA.
bioRxiv. 2025 Jun 30:2025.06.27.662003. doi: 10.1101/2025.06.27.662003.
Excitatory synaptic transmission in the human nervous system is mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), tetrameric ligand-gated ion channels localized in the excitatory post-synaptic membrane. AMPARs are activated by the binding of the neurotransmitter glutamate (Glu), which opens the ion channel and allows the influx of Na and Ca ions into the post-synaptic neuron, initiating signal transduction. Despite many efforts, a ion permeation pathway of both monovalent and divalent cations in AMPARs remains elusive. From analyzing our cryo-electron microscopy (cryo-EM) map of an open calcium-permeable AMPAR (CP-AMPAR) ion channel, we identified potential sites vital to permeation of cations through the channel. To delineate mechanisms of permeation, we studied the channel with all-atom molecular dynamics (MD) simulations. Both Na and Ca ions are coordinated by an entry site at the top of the channel prior to entering the selectivity filter. A mutation at the filter (Q607E), implicated in a neurodevelopmental disorder, makes the channel more susceptible to Zn block but also creates a more energetically favorable environment for Na and Ca permeation through the ion channel. These findings describe a biophysical basis for ion permeation in CP-AMPARs and how disease mutations alter the channel, which will inform therapeutic design against disease mutations in AMPARs that alter the ion channel.
人类神经系统中的兴奋性突触传递由α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPARs)介导,AMPARs是位于兴奋性突触后膜的四聚体配体门控离子通道。AMPARs通过神经递质谷氨酸(Glu)的结合而被激活,谷氨酸打开离子通道,使钠离子和钙离子流入突触后神经元,从而启动信号转导。尽管进行了许多研究,但AMPARs中单价和二价阳离子的离子渗透途径仍不清楚。通过分析我们获得的开放型钙通透AMPAR(CP-AMPAR)离子通道的冷冻电子显微镜(cryo-EM)图谱,我们确定了对阳离子通过该通道渗透至关重要的潜在位点。为了阐明渗透机制,我们用全原子分子动力学(MD)模拟研究了该通道。钠离子和钙离子在进入选择性过滤器之前,都在通道顶部的一个入口位点处进行配位。过滤器处的一个突变(Q607E)与一种神经发育障碍有关,它使通道更容易受到锌的阻断,但也为钠离子和钙离子通过离子通道渗透创造了一个能量上更有利的环境。这些发现描述了CP-AMPARs中离子渗透的生物物理基础,以及疾病突变如何改变通道,这将为针对改变离子通道的AMPARs疾病突变的治疗设计提供信息。