Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany.
Department of Physics, RWTH Aachen University, 52062 Aachen, Germany.
J Chem Inf Model. 2023 Feb 27;63(4):1293-1300. doi: 10.1021/acs.jcim.2c01494. Epub 2023 Feb 9.
The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are neurotransmitter-activated cation channels ubiquitously expressed in vertebrate brains. The regulation of calcium flux through the channel pore by RNA-editing is linked to synaptic plasticity while excessive calcium influx poses a risk for neurodegeneration. Unfortunately, the molecular mechanisms underlying this key process are mostly unknown. Here, we investigated calcium conduction in calcium-permeable AMPAR using Molecular Dynamics (MD) simulations with recently introduced multisite force-field parameters for Ca. Our calculations are consistent with experiment and explain the distinct calcium permeability in different RNA-edited forms of GluA2. For one of the identified metal binding sites, multiscale Quantum Mechanics/Molecular Mechanics (QM/MM) simulations further validated the results from MD and revealed small but reproducible charge transfer between the metal ion and its first solvation shell. In addition, the ion occupancy derived from MD simulations independently reproduced the Ca binding profile in an X-ray structure of an NaK channel mimicking the AMPAR selectivity filter. This integrated study comprising X-ray crystallography, multisite MD, and multiscale QM/MM simulations provides unprecedented insights into Ca permeation mechanisms in AMPARs, and paves the way for studying other biological processes in which Ca plays a pivotal role.
α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPARs)是脊椎动物大脑中普遍表达的神经递质激活的阳离子通道。通过 RNA 编辑调节通道孔中的钙流与突触可塑性有关,而过量的钙内流则会增加神经退行性病变的风险。不幸的是,这一关键过程的分子机制在很大程度上尚不清楚。在这里,我们使用最近引入的 Ca 多站点力场参数,通过分子动力学 (MD) 模拟研究了钙通透性 AMPAR 中的钙传导。我们的计算与实验一致,并解释了不同 RNA 编辑形式的 GluA2 中不同的钙通透性。对于鉴定出的金属结合位点之一,多尺度量子力学/分子力学 (QM/MM) 模拟进一步验证了 MD 的结果,并揭示了金属离子与其第一溶剂化壳之间的微小但可重复的电荷转移。此外,从 MD 模拟得出的离子占有率独立地重现了 AMPAR 选择性过滤器模拟 NaK 通道的 X 射线结构中的 Ca 结合曲线。这项综合研究包括 X 射线晶体学、多站点 MD 和多尺度 QM/MM 模拟,为 AMPAR 中的钙渗透机制提供了前所未有的见解,并为研究其他 Ca 发挥关键作用的生物学过程铺平了道路。