Peineau Thibault, Marcovich Irina, Rodriguez Cristobal von Muhlenbrock, O'Malley Sydney, Cui Runjia, Ballesteros Angela, Holt Jeffrey R
Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
Hear Res. 2025 May;460:109229. doi: 10.1016/j.heares.2025.109229. Epub 2025 Mar 6.
Sensory transduction in auditory hair cells gates mechanosensitive ion channels, converting sound information into electrical signals (Zheng and Holt, 2021). Previously, we found that Transmembrane channel (TMC) proteins 1 and 2 form the pore of hair cell transduction channels (Pan et al., 2013; 2018). The structure of C. elegans TMC proteins (Jeong et al., 2022; Clark et al., 2024) and predicted mammalian TMC structures (Hahn et al., 2009; Ballesteros et al., 2018; Pan et al., 2018) are reminiscent of TMEM16 proteins, which function as Ca-activated ion channels and lipid scramblases. Here, we investigated lipid scramblase activity in live auditory hair cells with pharmacologic or genetic disruption of TMC1, extending work reported by Ballesteros and Swartz (2022). We used annexin-V to label phosphatidylserine (PS) localized in the outer leaflet of hair cell stereocilia membranes. PS externalization was triggered by disruption of sensory transduction using the blocker, benzamil, or by genetic mutations that affect TMC1 permeation properties. We found that expression of either TMC1 or TMC2, was essential for PS externalization. Tmc1/Tmc2 knockout mice and Tmie mutant mice lacked PS externalization completely. We also determined that expression of exogenous human TMCs (hTMC1 or hTMC2) in Tmc1/Tmc2 knockout mice induced PS externalization. Lastly, we demonstrated that expression of a dominant mutation in Tmc1 evoked constitutive PS externalization, while a recessive mutation eliminated PS externalization. Our data suggest that disruption of sensory transduction may lead to dysregulation of membrane homeostasis in hair cells and thus may contribute to auditory dysfunction in mice and humans.
听觉毛细胞中的感觉转导控制着机械敏感离子通道,将声音信息转化为电信号(郑和平霍尔特,2021年)。此前,我们发现跨膜通道(TMC)蛋白1和2构成了毛细胞转导通道的孔道(潘等人,2013年;2018年)。秀丽隐杆线虫TMC蛋白的结构(郑等人,2022年;克拉克等人,2024年)以及预测的哺乳动物TMC结构(哈恩等人,2009年;巴列斯特罗斯等人,2018年;潘等人,2018年)让人联想到TMEM16蛋白,后者作为钙激活离子通道和脂质翻转酶发挥作用。在此,我们通过药理学或基因敲除TMC1来研究活体内听觉毛细胞中的脂质翻转酶活性,扩展了巴列斯特罗斯和施瓦茨(2022年)报道的工作。我们使用膜联蛋白-V标记位于毛细胞静纤毛膜外小叶的磷脂酰丝氨酸(PS)。使用阻滞剂苯扎明破坏感觉转导或通过影响TMC1通透特性的基因突变引发了PS外化。我们发现TMC1或TMC2的表达对于PS外化至关重要。Tmc1/Tmc2基因敲除小鼠和Tmie突变小鼠完全缺乏PS外化。我们还确定在Tmc1/Tmc2基因敲除小鼠中外源人TMCs(hTMC1或hTMC2)的表达诱导了PS外化。最后,我们证明Tmc1中显性突变的表达引发了组成型PS外化,而隐性突变则消除了PS外化。我们的数据表明感觉转导的破坏可能导致毛细胞膜稳态失调,从而可能导致小鼠和人类的听觉功能障碍。