Ilott Saja Isabella, Pearse Cass D, Tigg Benjamin, Kattnig Daniel R
Department of Physics, University of Exeter Stocker Road, Exeter, Devon EX4 4QL, United Kingdom.
Living Systems Institute, University of Exeter Stocker Road, Exeter, Devon EX4 4QD, United Kingdom.
J Chem Phys. 2025 Jul 14;163(2). doi: 10.1063/5.0278806.
A magnetic compass sense in migratory animals is widely attributed to quantum spin dynamics in radical pairs formed within cryptochrome (Cry) flavoproteins. During Cry photoreduction, electron transfer along a chain of four tryptophan residues creates a sequence of radical pairs. Reversible electron hopping between the third (RPC) and fourth (RPD) radical pairs has been proposed to reconcile two opposing demands: efficient magnetosensitivity via RPC and downstream signaling via RPD. We present an efficient numerical approach for modeling dynamically exchanging radical pairs, employing an iterative linear solver with tailored preconditioners. This enables simulation of radical pair networks in Cry with arbitrary hopping rates, allowing a detailed exploration of their magnetosensitivity. Using this method, we reassess the reversible hopping hypothesis. For the crystal structure of avian Cry, hopping does not enhance sensitivity beyond that of a static RPC pair. However, by systematically optimizing kinetic parameters and the position and orientation of the fourth tryptophan, we identify configurations that enhance magnetic sensitivity by up to a factor of 3.6, while retaining the surface-exposure of this residue, potentially linked to signaling. Our findings suggest that Cry magnetosensitivity may be finely tuned by structural or evolutionary factors. The developed framework offers a broadly applicable tool for simulating complex radical pair dynamics in biology and chemistry, extending beyond magnetoreception.
迁徙动物的磁罗盘感知广泛归因于隐花色素(Cry)黄素蛋白内形成的自由基对中的量子自旋动力学。在Cry光还原过程中,电子沿着四个色氨酸残基的链转移,产生一系列自由基对。有人提出,第三(RPC)和第四(RPD)自由基对之间的可逆电子跳跃可以协调两个相互矛盾的需求:通过RPC实现高效磁敏感性,以及通过RPD实现下游信号传导。我们提出了一种高效的数值方法来模拟动态交换的自由基对,采用带有定制预处理器的迭代线性求解器。这使得能够模拟具有任意跳跃速率的Cry中的自由基对网络,从而详细探索它们的磁敏感性。使用这种方法,我们重新评估了可逆跳跃假说。对于鸟类Cry的晶体结构,跳跃并不会增强敏感性,其敏感性不会超过静态RPC对。然而,通过系统地优化动力学参数以及第四个色氨酸的位置和取向,我们确定了一些构型,这些构型可将磁敏感性提高多达3.6倍,同时保留该残基的表面暴露,这可能与信号传导有关。我们的研究结果表明,Cry磁敏感性可能会受到结构或进化因素的精细调节。所开发的框架为模拟生物学和化学中复杂的自由基对动力学提供了一种广泛适用的工具,其应用范围超出了磁感受领域。