卷积神经网络在根尖片上识别牙周骨丧失的适用性和性能:一项范围综述
Applicability and performance of convolutional neural networks for the identification of periodontal bone loss in periapical radiographs: a scoping review.
作者信息
Putra Ramadhan Hardani, Astuti Eha Renwi, Nurrachman Aga Satria, Savitri Yunita, Vadya Anastasya Vara, Khairunisa Serafina Tasyarani, Iikubo Masahiro
机构信息
Department of Dentomaxillofacial Radiology, Faculty of Dental Medicine, Universitas Airlangga, Jalan Prof. Dr. Mayjen Moestopo No. 47, Surabaya, 60132, East Java, Indonesia.
Bachelor of Dental Medicine Study Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
出版信息
Oral Radiol. 2025 Jul 9. doi: 10.1007/s11282-025-00839-w.
The study aimed to review the applicability and performance of various Convolutional Neural Network (CNN) models for the identification of periodontal bone loss (PBL) in digital periapical radiographs achieved through classification, detection, and segmentation approaches. We searched the PubMed, IEEE Xplore, and SCOPUS databases for articles published up to June 2024. After the selection process, a total of 11 studies were included in this review. The reviewed studies demonstrated that CNNs have a significant potential application for automatic identification of PBL on periapical radiographs through classification and segmentation approaches. CNN architectures can be utilized to classify the presence or absence of PBL, the severity or degree of PBL, and PBL area segmentation. CNN showed a promising performance for PBL identification on periapical radiographs. Future research should focus on dataset preparation, proper selection of CNN architecture, and robust performance evaluation to improve the model. Utilizing an optimized CNN architecture is expected to assist dentists by providing accurate and efficient identification of PBL.
本研究旨在回顾各种卷积神经网络(CNN)模型在通过分类、检测和分割方法识别数字化根尖片上的牙周骨丧失(PBL)方面的适用性和性能。我们在PubMed、IEEE Xplore和SCOPUS数据库中检索截至2024年6月发表的文章。经过筛选过程,本综述共纳入11项研究。综述的研究表明,卷积神经网络通过分类和分割方法在自动识别根尖片上的牙周骨丧失方面具有巨大的潜在应用价值。卷积神经网络架构可用于对牙周骨丧失的存在与否、严重程度或程度以及牙周骨丧失区域分割进行分类。卷积神经网络在根尖片上识别牙周骨丧失方面表现出良好的性能。未来的研究应集中在数据集准备、卷积神经网络架构的正确选择以及稳健的性能评估上,以改进模型。利用优化的卷积神经网络架构有望通过准确、高效地识别牙周骨丧失来帮助牙医。