Suppr超能文献

使用定制的两阶段检测器在全景X光片中进行自动化牙周炎骨丢失诊断。

Automated periodontitis bone loss diagnosis in panoramic radiographs using a bespoke two-stage detector.

作者信息

Kong Zhengmin, Ouyang Hui, Cao Yiyuan, Huang Tao, Ahn Euijoon, Zhang Maoqi, Liu Huan

机构信息

School of Electrical Engineering and Automation, Wuhan University, Wuhan, 430072, China.

Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.

出版信息

Comput Biol Med. 2023 Jan;152:106374. doi: 10.1016/j.compbiomed.2022.106374. Epub 2022 Nov 29.

Abstract

Periodontitis is a serious oral disease that can lead to severe conditions such as bone loss and teeth falling out if left untreated. Diagnosis of radiographic bone loss (RBL) is critical for the staging and treatment of periodontitis. Unfortunately, the RBL diagnosis by examining the panoramic radiographs is time-consuming. The demand for automated image analysis is urgent. However, existing deep learning methods have limited performances in diagnosis accuracy and have certain difficulties in implementation. Hence, we propose a novel two-stage periodontitis detection convolutional neural network (PDCNN), where we optimize the detector with an anchor-free encoding that allows fast and accurate prediction. We also introduce a proposal-connection module in our detector that excludes less relevant regions of interests (ROIs), making the network focus on more relevant ROIs to improve detection accuracy. Furthermore, we introduced a large-scale, high-resolution panoramic radiograph dataset that captures various complex cases with professional periodontitis annotations. Experiments on our panoramic-image dataset show that the proposed approach achieved an RBL classification accuracy of 0.762. This result shows that our approach outperforms state-of-the-art detectors such as Faster R-CNN and YOLO-v4. We can conclude that the proposed method successfully improves the RBL detection performance. The dataset and our code have been released on GitHub. (https://github.com/PuckBlink/PDCNN).

摘要

牙周炎是一种严重的口腔疾病,如果不加以治疗,可能会导致诸如骨质流失和牙齿脱落等严重情况。影像学骨丢失(RBL)的诊断对于牙周炎的分期和治疗至关重要。不幸的是,通过检查全景X光片来诊断RBL非常耗时。对自动图像分析的需求迫在眉睫。然而,现有的深度学习方法在诊断准确性方面表现有限,并且在实施过程中存在一定困难。因此,我们提出了一种新颖的两阶段牙周炎检测卷积神经网络(PDCNN),我们使用无锚点编码对检测器进行优化,从而实现快速准确的预测。我们还在检测器中引入了一个提议连接模块,该模块排除了相关性较低的感兴趣区域(ROI),使网络专注于更相关的ROI以提高检测准确性。此外,我们引入了一个大规模、高分辨率的全景X光片数据集,该数据集通过专业的牙周炎注释捕捉了各种复杂病例。在我们的全景图像数据集上进行的实验表明,所提出的方法实现了0.762的RBL分类准确率。这一结果表明,我们的方法优于诸如Faster R-CNN和YOLO-v4等当前最先进的检测器。我们可以得出结论,所提出的方法成功提高了RBL检测性能。该数据集和我们的代码已在GitHub上发布。(https://github.com/PuckBlink/PDCNN)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验