Kouchi Zen, Kojima Masaki
Department of Neuronal Information, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai Aichi, Japan.
School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji Tokyo, Japan.
PLoS One. 2025 Jul 9;20(7):e0326924. doi: 10.1371/journal.pone.0326924. eCollection 2025.
PARG1 (ArhGAP29) belongs to a class of F-BAR proteins that contain a GTPase activating (GAP) domain that stimulates the GTP-to-GDP conversion of RhoGTPases. In this study, the substrate-recognition mechanism of human PARG1 was structurally modeled in computational approaches. Docking analysis using HDOCK showed that the predicted RhoGAP domain containing the N-terminal C1 region harbored structural determinants only for RhoA recognition with its catalytic loop and the α4- and α9-10 helices of the GAP domain. Molecular dynamics of wild-type PARG1-RhoA complex revealed that the predicted C1 structure depicted unique interface for the α3 helix of RhoA, leading to stable interaction with the RhoA substrate. Interestingly, RhoA interacted with the C1-GAP domains with missense mutations such as p.Thr622Met (T622M) and p.Ile845Val (I845V) differently, but the several interface residues in the catalytic loop and C-terminal α9-α10 helices were not matched to the known crystallized complexes in molecular dynamics simulation. PARG1 I845V mutant complex was theoretically deduced to disorganize RhoA interfaces and T622M mutation decreased the substrate affinity to 80% of that of WT PARG1 complex. The C-terminal C1 domain that formed a coiled-coil structure in a wild-type specific manner and the loop regions adjacent to the GAP region modulated the corresponding C1 interaction interfaces in RhoA. There were differences in motions of the conserved and variable interface residues among RhoGAP domains that locate in the α9-10 loop and C-terminal α4 and N-terminal α9-10 helices of the GAP domain between WT and mutant RhoGAP-RhoA complexes. The stable RhoA interaction specific to wild-type PARG1 is attributed to the motions of the GAP region including the C1 domain, in contrast to mutant PARG1 GAP domains that tended to disorganize the catalytic complex.
PARG1(ArhGAP29)属于一类F-BAR蛋白,这类蛋白包含一个GTP酶激活(GAP)结构域,可刺激RhoGTP酶从GTP向GDP的转化。在本研究中,采用计算方法对人PARG1的底物识别机制进行了结构建模。使用HDOCK进行的对接分析表明,预测的包含N端C1区域的RhoGAP结构域仅通过其催化环以及GAP结构域的α4和α9 - 10螺旋具有识别RhoA的结构决定因素。野生型PARG1 - RhoA复合物的分子动力学表明,预测的C1结构描绘了与RhoA的α3螺旋独特的界面,从而导致与RhoA底物的稳定相互作用。有趣的是,RhoA与错义突变(如p.Thr622Met(T622M)和p.Ile845Val(I845V))的C1 - GAP结构域相互作用方式不同,但在分子动力学模拟中,催化环和C端α9 - α10螺旋中的几个界面残基与已知的结晶复合物不匹配。理论上推断PARG1 I845V突变体复合物会破坏RhoA界面,而T622M突变使底物亲和力降低至野生型PARG1复合物的80%。以野生型特异性方式形成卷曲螺旋结构的C端C1结构域以及与GAP区域相邻的环区域调节了RhoA中相应的C1相互作用界面。野生型和突变型RhoGAP - RhoA复合物之间,位于GAP结构域的α9 - 10环以及C端α4和N端α9 - 10螺旋中的RhoGAP结构域的保守和可变界面残基的运动存在差异。与倾向于破坏催化复合物的突变型PARG1 GAP结构域相反,野生型PARG1特有的稳定RhoA相互作用归因于包括C1结构域在内的GAP区域的运动。