Suppr超能文献

基于机器学习的临床预测模型的开发与验证,用于监测接受免疫治疗的泛癌患者的肝损伤

Development and validation of a machine learning-based clinical prediction model for monitoring liver injury in patients with pan-cancer receiving immunotherapy.

作者信息

Wang Yi, Lei Jing, Jin Zhiping, Jiang Ying, Zhang Ningping, Lv Minzhi, Liu Tianshu

机构信息

Department of Cancer Screening and Prevention, Zhongshan Hospital, Fudan University, Shanghai, China.

Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China.

出版信息

Int J Med Inform. 2025 Jul 5;203:106036. doi: 10.1016/j.ijmedinf.2025.106036.

Abstract

BACKGROUND

Immune checkpoint inhibitor (ICI)-related liver injury poses a considerable clinical challenge for cancer patients. This study aimed to develop and validate an interpretable predictive model employing machine learning (ML) algorithms to accurately identify patients at high risk of acute liver injury within one month of initiating ICI treatment.

METHODS

This longitudinal cohort study included pan-cancer patients who received their first ICI treatment between March 2019 and September 2022 at Zhongshan Hospital. Six ML algorithms, namely neural networks (NN), gradient boosting classifier (GBC), eXtreme gradient boosting (XGBoost), logistic regression (LR), categorical boosting classifier (CatBoost) and random forest (RF), were utilized to construct predictive models for acute ICI-related liver injury. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and brier score (BS). The SHapley Additive exPlanations (SHAP) method was applied to rank the feature importance and interpret the final model, providing insights into the contribution of each feature to liver injury prediction, thereby enhancing clinical interpretability. This study is registered with the Chinese Clinical Trial Registry (ChiCTR2300067470).

RESULTS

A total of 863 patients were enrolled in the study, with 22.71% experiencing liver injury within one month of ICI initiation. Among the six preliminary models, the RF model exhibited the best performance and was selected for the development of the final model. The SHAP method was utilized to rank variables from the six pre-models, with 10 variables selected for the final model by identifying the intersection of the top 20 most important variables across these models. The final RF model exhibited robust performance, achieving an AUC of 0.81 (95% CI: 0.73-0.90) on the test set, and 0.79 (95% CI: 0.72-0.88) and 0.80 (95% CI: 0.72-0.89) in the 5-fold and 10-fold cross-validation, respectively. The Decision Curve Analysis (DCA) curve illustrated solid clinical benefit, and the calibration curve reflected good predictive consistency.

CONCLUSION

An interpretable RF model was developed to predict acute liver injury occurring within one month after ICI treatment. This clinical-friendly model enables early identification of high-risk patients, facilitating optimized clinical management and ultimately improving treatment outcomes.

摘要

背景

免疫检查点抑制剂(ICI)相关肝损伤给癌症患者带来了相当大的临床挑战。本研究旨在开发并验证一种可解释的预测模型,该模型采用机器学习(ML)算法,以准确识别在开始ICI治疗后一个月内有急性肝损伤高风险的患者。

方法

这项纵向队列研究纳入了2019年3月至2022年9月在中山医院接受首次ICI治疗的泛癌患者。使用六种ML算法,即神经网络(NN)、梯度提升分类器(GBC)、极端梯度提升(XGBoost)、逻辑回归(LR)、分类提升分类器(CatBoost)和随机森林(RF),构建与ICI相关急性肝损伤的预测模型。使用受试者操作特征曲线下面积(AUC)、准确性、敏感性、特异性、阳性预测值(PPV)、阴性预测值(NPV)和布里尔评分(BS)评估模型性能。采用SHapley加性解释(SHAP)方法对特征重要性进行排序并解释最终模型,深入了解每个特征对肝损伤预测的贡献,从而提高临床可解释性。本研究已在中国临床试验注册中心注册(ChiCTR2300067470)。

结果

本研究共纳入863例患者,其中22.71%在ICI开始后一个月内出现肝损伤。在六个初步模型中,RF模型表现最佳,被选用于开发最终模型。利用SHAP方法对六个预模型中的变量进行排序,通过确定这些模型中前20个最重要变量的交集,为最终模型选择了10个变量。最终的RF模型表现稳健,在测试集上的AUC为0.81(95%CI:0.73 - 0.90),在5折和10折交叉验证中的AUC分别为0.79(95%CI:0.72 - 0.88)和0.80(95%CI:0.72 - 0.89)。决策曲线分析(DCA)曲线显示出良好的临床获益,校准曲线反映出良好的预测一致性。

结论

开发了一种可解释的RF模型,用于预测ICI治疗后一个月内发生的急性肝损伤。这个对临床友好的模型能够早期识别高危患者,促进优化临床管理并最终改善治疗结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验