Pudjihartono Nicholas, Ho Daniel, O'Sullivan Justin Martin
Liggins Institute, The University of Auckland, Auckland, New Zealand.
Liggins Institute, The University of Auckland, Auckland, New Zealand
RMD Open. 2025 Jul 9;11(3):e005737. doi: 10.1136/rmdopen-2025-005737.
Previous genome-wide association studies (GWAS) have identified numerous genetic loci associated with juvenile idiopathic arthritis (JIA). However, the functional impact of these variants-particularly on tissue-specific gene expression-and which regulatory interactions make the greatest relative contribution to JIA risk remain unclear. Identifying these key single-nucleotide polymorphism (SNP)-gene-tissue combinations can help prioritise targets for future functional studies and therapeutic interventions.
We performed two-sample Mendelian randomisation (2SMR) using spatial expression quantitative trait loci (eQTLs) from nine tissue-specific gene-regulatory networks as instrumental variables (IVs). We also identified JIA-associated SNPs from previous GWAS and mapped their spatial eQTL effects across 49 human tissues. These SNP sets were then used as features in a Lasso-regularised logistic regression model to predict JIA disease status. The model weight magnitudes served as proxies for each SNP's contribution to JIA risk. We evaluated the robustness of our model's feature ranking across 50 cross-validation runs.
The top-ranked SNPs included rs7775055, which tags the human leukocyte antigen (HLA) class II haplotype , and rs6679677, a non-coding variant that is in 100% linkage with with a coding variant in . IVs for genes implicated in infection-related immune processes (eg, , and ) also made significant contributions to JIA risk. We additionally identified a spatial eQTL (rs10849448) that upregulated the cytokine signalling gene across all 49 tissues. Overall, our model highlighted the roles of genes involved in antigen presentation, infection susceptibility and cytokine signalling.
By applying a machine learning approach to rank SNP-gene-tissue contributions to JIA risk, our findings offer insights into the genetic mechanisms underlying JIA pathogenesis. Future experimental validation could facilitate new therapeutic targets for the treatment or prevention of JIA.
先前的全基因组关联研究(GWAS)已鉴定出许多与幼年特发性关节炎(JIA)相关的基因座。然而,这些变异体的功能影响——特别是对组织特异性基因表达的影响——以及哪些调控相互作用对JIA风险的相对贡献最大仍不清楚。确定这些关键的单核苷酸多态性(SNP)-基因-组织组合有助于为未来的功能研究和治疗干预确定目标优先级。
我们使用来自九个组织特异性基因调控网络的空间表达定量性状基因座(eQTL)作为工具变量(IV)进行两样本孟德尔随机化(2SMR)。我们还从先前的GWAS中鉴定出JIA相关的SNP,并绘制它们在49种人体组织中的空间eQTL效应。然后将这些SNP集用作套索正则化逻辑回归模型中的特征,以预测JIA疾病状态。模型权重大小用作每个SNP对JIA风险贡献的代理。我们在50次交叉验证运行中评估了模型特征排名的稳健性。
排名靠前的SNP包括标记人类白细胞抗原(HLA)II类单倍型的rs7775055,以及与一个编码变体100%连锁的非编码变体rs6679677。涉及感染相关免疫过程的基因(如、和)的IV对JIA风险也有显著贡献。我们还鉴定出一个空间eQTL(rs10849448),它在所有49种组织中上调细胞因子信号基因。总体而言,我们的模型突出了参与抗原呈递、感染易感性和细胞因子信号传导的基因的作用。
通过应用机器学习方法对SNP-基因-组织对JIA风险的贡献进行排名,我们的发现为JIA发病机制的遗传机制提供了见解。未来的实验验证可能有助于为JIA的治疗或预防提供新的治疗靶点。