Suppr超能文献

利用可解释人工智能在大规模网络环境中进行网络威胁的早期检测与缓解。

Leveraging explainable artificial intelligence for early detection and mitigation of cyber threat in large-scale network environments.

作者信息

Nalinipriya G, Rama Sree S, Radhika K, Laxmi Lydia E, Karim Faten Khalid, Ishak Mohamad Khairi, Mostafa Samih M

机构信息

Department of Information Technology, Saveetha Engineering College, Chennai, 602 105, India.

Department of CSE, Aditya University, Surampalem, India.

出版信息

Sci Rep. 2025 Jul 9;15(1):24662. doi: 10.1038/s41598-025-08597-9.

Abstract

Cybersecurity has often gained much popularity over the years in a fast-evolving discipline, as the number of cybercriminals and threats rises consistently to stay ahead of law enforcement. Recently, cybercriminals have become more complex with their approaches, though the underlying motives for conducting cyber threats remain largely the same. Classical cybersecurity solutions have become poor at identifying and alleviating evolving cyber threats. Machine learning (ML) plays a crucial role in cybersecurity by making malware detection more scalable, efficient, and automated, reducing reliance on conventional human intervention methods. The cybersecurity domain comprises ML challenges that require effective theoretical and methodical handling. Various statistical and ML approaches, like Bayesian classification, deep learning (DL), and support vector machines (SVM), have efficiently alleviated cyber threats. The insights and hidden trends detected from network data and the architecture of a data-driven ML to avoid this attack are essential to establishing an intelligent security system. This study develops a novel Leveraging Explainable Artificial Intelligence for Early Detection and Mitigation of Cyber Threats in Large-Scale Network Environments (LXAIDM-CTLSN) method. The projected LXAIDM-CTLSN method aims to recognize and classify cyber-attacks in achieving cybersecurity. Initially, the normalization is performed using Min-max normalization to standardize the data. The Mayfly Optimization Algorithm (MOA) is then utilized for feature selection, effectively mitigating computational complexity. A Sparse Denoising Autoencoder (SDAE) model recognizes and classifies cyber threats. Additionally, the Hiking Optimization Algorithm (HOA) is employed to fine-tune the hyperparameters of the SDAE model. Finally, the XAI method LIME is integrated to enhance the explainability and understanding of the Blackbox technique, ensuring superior classification of cyberattacks. Extensive experiments were conducted to evaluate the overall robustness of the proposed XAIDM-CTLSN method using the NSLKDD2015 and CICIDS2017 datasets. The experimental validation of the XAIDM-CTLSN method portrayed a superior accuracy value of 99.09% over other techniques.

摘要

多年来,随着网络犯罪分子和威胁数量持续上升以领先于执法部门,网络安全在这个快速发展的领域中越来越受欢迎。最近,网络犯罪分子的作案手法变得更加复杂,尽管实施网络威胁的潜在动机基本相同。传统的网络安全解决方案在识别和缓解不断演变的网络威胁方面已经变得很差。机器学习(ML)通过使恶意软件检测更具可扩展性、高效性和自动化,减少对传统人工干预方法的依赖,在网络安全中发挥着关键作用。网络安全领域包含需要有效理论和方法处理的机器学习挑战。各种统计和机器学习方法,如贝叶斯分类、深度学习(DL)和支持向量机(SVM),已经有效地缓解了网络威胁。从网络数据中检测到的见解和隐藏趋势以及用于避免这种攻击的数据驱动机器学习架构对于建立智能安全系统至关重要。本研究开发了一种新颖的利用可解释人工智能进行大规模网络环境中网络威胁的早期检测和缓解(LXAIDM-CTLSN)方法。预计的LXAIDM-CTLSN方法旨在识别和分类网络攻击以实现网络安全。最初,使用最小-最大归一化进行归一化以标准化数据。然后利用蜉蝣优化算法(MOA)进行特征选择,有效降低计算复杂度。稀疏去噪自动编码器(SDAE)模型识别和分类网络威胁。此外,采用徒步优化算法(HOA)对SDAE模型的超参数进行微调。最后,集成可解释人工智能方法LIME以增强对黑盒技术的可解释性和理解,确保对网络攻击的卓越分类。使用NSLKDD2015和CICIDS2017数据集进行了广泛的实验,以评估所提出的XAIDM-CTLSN方法的整体鲁棒性。XAIDM-CTLSN方法的实验验证显示出比其他技术更高的99.09%的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91e2/12241574/2a543f4bf01a/41598_2025_8597_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验