Suppr超能文献

基于MIMIC-IV数据库的非创伤性脑出血患者脓毒症风险预测模型

A predictive model for sepsis risk in patients with non-traumatic cerebral hemorrhage based on the MIMIC-IV database.

作者信息

Wu Xinxu, Hu Fangqi, Zhang Tianpeng, Pan Yunsong, He Jie, Zhang Rui, Zhou Hui, Shi Hui

机构信息

Department of Neurosurgery, Lianyungang Clinical Medical College, Xuzhou Medical University, Lianyungang, 222000, Jiangsu, China.

Department of Neurosurgery, The First People's Hospital of Lianyungang City, Lianyungang, 222000, Jiangsu, China.

出版信息

Sci Rep. 2025 Jul 9;15(1):24765. doi: 10.1038/s41598-025-10119-6.

Abstract

Patients with non-traumatic cerebral hemorrhage admitted to the intensive care unit (ICU) are known to be at high risk for developing sepsis. However, limited research exists to quantify this risk. Therefore, this study aimed to develop a reliable predictive model to assess the risk of sepsis in ICU patients with non-traumatic cerebral hemorrhage. We extracted data on patients admitted to the ICU with non-traumatic cerebral hemorrhage from the Medical Information Mart for Intensive Care IV (MIMIC IV) database. Afterward, the patients were then randomized in a 7:3 ratio into a training set (N = 1,365) and a validation set (N = 585). Least Absolute Shrinkage and Selection Operator (LASSO) regression and stepwise logistic regression were employed to screen variables within the training set. The final logistic regression model was constructed using the identified key predictors. Finally, the model's performance was evaluated using decision curves, calibration curves, and receiver operating characteristic (ROC) curves. A total of 1,950 patients were included in the study. The training and validation sets comprised 1,365 and 585 patients, respectively. The training set analysis revealed nine crucial predictors for secondary sepsis in ICU patients with non-traumatic cerebral hemorrhage. These factors included liver disease, acidosis, anemia, thrombocytopenia, urinary tract infection, invasive mechanical ventilation, Glasgow Coma Scale (GCS) scores, leukocyte counts, and blood calcium levels. These factors were incorporated into the final model. The area under the ROC curve (AUC) was 0.821 for the training set and 0.845 for the validation set, indicating the model's high accuracy in predicting sepsis. Calibration curves demonstrated good agreement between the model's predictions and actual outcomes. Furthermore, the decision curve analysis indicated that the model offers favorable clinical utility. This study successfully developed a dynamic nomogram model for predicting the risk of secondary sepsis in ICU patients with non-traumatic cerebral hemorrhage. The model is expected to provide valuable predictive information to facilitate timely interventions by healthcare professionals.

摘要

入住重症监护病房(ICU)的非创伤性脑出血患者被认为发生脓毒症的风险很高。然而,量化这种风险的研究有限。因此,本研究旨在建立一个可靠的预测模型,以评估ICU中非创伤性脑出血患者发生脓毒症的风险。我们从重症监护医学信息集市IV(MIMIC IV)数据库中提取了入住ICU的非创伤性脑出血患者的数据。随后,患者以7:3的比例随机分为训练集(N = 1365)和验证集(N = 585)。采用最小绝对收缩和选择算子(LASSO)回归和逐步逻辑回归在训练集中筛选变量。使用确定的关键预测因子构建最终的逻辑回归模型。最后,使用决策曲线、校准曲线和受试者工作特征(ROC)曲线评估模型的性能。本研究共纳入1950例患者。训练集和验证集分别包括1365例和585例患者。训练集分析揭示了ICU中非创伤性脑出血患者继发性脓毒症的九个关键预测因子。这些因素包括肝病、酸中毒、贫血、血小板减少、尿路感染、有创机械通气、格拉斯哥昏迷量表(GCS)评分、白细胞计数和血钙水平。这些因素被纳入最终模型。训练集的ROC曲线下面积(AUC)为0.821,验证集为0.845,表明该模型在预测脓毒症方面具有较高的准确性。校准曲线显示模型预测与实际结果之间具有良好的一致性。此外,决策曲线分析表明该模型具有良好的临床实用性。本研究成功建立了一个动态列线图模型,用于预测ICU中非创伤性脑出血患者继发性脓毒症的风险。该模型有望提供有价值的预测信息,以促进医护人员及时进行干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48c9/12241317/488cc640205f/41598_2025_10119_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验