Siddique Abu Bakker, Munshi Tanveer Alam, Rakin Nazmul Islam, Hashan Mahamudul, Chnapa Sushmita Sarker, Jahan Labiba Nusrat
Department of Petroleum and Mining Engineering, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
Sci Rep. 2025 Jul 9;15(1):24706. doi: 10.1038/s41598-025-89199-3.
Accurate determination of pore pressure is critical in the design of wells, determining a safe range of mud properties, and estimating the required mud weight to ensure wellbore stability. Conventional techniques for forecasting pore pressure, such as the Eaton, Bower, or compressibility methods, have certain constraints. These methods depend on empirical relationships and constants that can differ between basins. This study proposes an effective data-driven approach that utilizes machine learning algorithms to forecast reservoir pore pressure. A total of five machine learning algorithms, namely multivariable regression (MVR), polynomial regression (PR), random forest (RF), CatBoost regression, and multilayer perception (MLP), are applied in this research. Hybrid stacking modeling is employed for the first time to forecast pore pressure and to improve the accuracy and robustness of the results by combining different methodologies. Principal component analysis is also utilized (PCA) to extract features, hence expediting the entire process by reducing dimensionality. To accomplish the objectives, 1811 recordings are selected from the Volve Field, situated approximately 200 km west of Stavanger, Norway. These recordings encompass depth data; well logs, including NPHI, GR, DT, RD, RHOB, RS, and RT; drilling activities, specifically ROP; and petrophysical parameters, including BVW, K, PHIF, SW, and VCL. Pore pressure is used as the output level to generate data-driven models. 70% of the dataset is used for training the machine learning models, while the remaining 30% is reserved for testing the models to evaluate their performance and generalization capability. Data standardization is conducted to ensure that the utilized data is statistically well-distributed, devoid of measurement mistakes, and impervious to instrumental noise. Regression metrics, such as mean MAE, R, Adjusted R RMSE, MinE, and MaxE are employed to evaluate the efficacy of the models. The results suggest that the stacking model, which integrates CatBoost and Random Forest (RF) as base models and Polynomial Regression (PR) as the meta-model, achieves an R of 0.9846, an adjusted R of 0.9842, MAE of 11.20 and an RMSE of 22.747 on the testing dataset. This makes it the most accurate model for pore pressure prediction, followed closely by CatBoost. The MVR, exhibiting an R of 0.896 and an RMSE of 57.931, is the least efficient model. A thorough comparison of all analyzed models indicates that the algorithms, ranked by performance metrics, are Stack_2, CatBoost, Stack_1, RF, PR, Stack_3, MLP, and MVR. Hybrid stacking improves performance even without hyperparameter tuning. PCA significantly speeds up the entire process by lowering the number of dimensions, hence enhancing the cost-effectiveness of the procedure. Using a few petrophysical, drilling, and well log data, the methodology presented in this work can help engineers and researchers quickly and precisely determine the reservoir pore pressure, validating the safe and cost-effective drilling operations.
准确测定孔隙压力对于井的设计、确定泥浆性能的安全范围以及估算确保井筒稳定性所需的泥浆重量至关重要。传统的孔隙压力预测技术,如伊顿法、鲍尔法或压缩性方法,存在一定的局限性。这些方法依赖于经验关系和常数,而不同盆地之间这些关系和常数可能会有所不同。本研究提出了一种有效的数据驱动方法,利用机器学习算法来预测储层孔隙压力。本研究共应用了五种机器学习算法,即多变量回归(MVR)、多项式回归(PR)、随机森林(RF)、CatBoost回归和多层感知(MLP)。首次采用混合堆叠建模来预测孔隙压力,并通过结合不同方法提高结果的准确性和稳健性。还利用主成分分析(PCA)来提取特征,从而通过降维加快整个过程。为实现这些目标,从位于挪威斯塔万格以西约200公里处的沃尔夫油田选取了1811条记录。这些记录包括深度数据;测井数据,包括中子孔隙度指数(NPHI)、自然伽马(GR)、声波时差(DT)、电阻率(RD)、体积密度(RHOB)、饱和度(RS)和电阻率(RT);钻井活动,特别是机械钻速(ROP);以及岩石物理参数,包括束缚水体积(BVW)、渗透率(K)、孔隙度指数(PHIF)、含水饱和度(SW)和粘土含量(VCL)。孔隙压力用作输出量来生成数据驱动模型。数据集的70%用于训练机器学习模型,其余30%留作测试模型,以评估其性能和泛化能力。进行数据标准化以确保所使用的数据在统计上分布良好,没有测量错误,并且不受仪器噪声影响。采用回归指标,如平均平均绝对误差(MAE)、相关系数(R)、调整后的相关系数(Adjusted R)、均方根误差(RMSE)、最小误差(MinE)和最大误差(MaxE)来评估模型的有效性。结果表明,以CatBoost和随机森林(RF)作为基础模型、多项式回归(PR)作为元模型的堆叠模型在测试数据集上的相关系数(R)为0.9846,调整后的相关系数(Adjusted R)为0.9842,平均绝对误差(MAE)为11.20,均方根误差(RMSE)为22.747。这使其成为孔隙压力预测最准确的模型,其次是CatBoost。多变量回归(MVR)的相关系数(R)为0.896,均方根误差(RMSE)为57.931,是效率最低的模型。对所有分析模型的全面比较表明,如果按性能指标排序,这些算法依次为:Stack_2、CatBoost、Stack_1、RF、PR、Stack_3、MLP和MVR。即使不进行超参数调整,混合堆叠也能提高性能。主成分分析通过降低维数显著加快了整个过程,从而提高了该过程的成本效益。利用一些岩石物理、钻井和测井数据,本研究提出的方法可以帮助工程师和研究人员快速准确地确定储层孔隙压力,从而验证安全且经济高效的钻井作业。