Suppr超能文献

用于估算油藏条件下原油体积系数的增强型机器学习集成方法。

Enhanced machine learning-ensemble method for estimation of oil formation volume factor at reservoir conditions.

作者信息

Kharazi Esfahani Parsa, Peiro Ahmady Langeroudy Kiana, Khorsand Movaghar Mohammad Reza

机构信息

Department of Petroleum Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Box 15875-4413, Tehran, 1591634311, Iran.

Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Box 15875-4413, Tehran, 1591634311, Iran.

出版信息

Sci Rep. 2023 Sep 14;13(1):15199. doi: 10.1038/s41598-023-42469-4.

Abstract

Since the oil formation volume factor (B) is crucial for various calculations in petroleum engineering, such as estimating original oil in place, fluid flow in the porous reservoir medium, and production from wells, this parameter is predicted using conventional methods including experimental tests, correlations, Equations of State, and artificial intelligence models. As a substitute to conventional black oil methods, the compositional oil method has been recently used for accurately predicting the oil formation volume factor. Although oil composition is essential for estimating this parameter, it is time-consuming and cost-intensive to obtain through laboratory analysis. Therefore, the input parameter of dissolved gas in oil has been used as a representative of the amount of light components in oil, which is an effective factor in determining oil volume changes, along with other parameters, including pressure, API gravity, and reservoir temperature. This study created machine learning models utilizing Gradient Boosting Decision Tree (GBDT) techniques, which also incorporated Extreme Gradient Boosting (XGBoost), GradientBoosting, and CatBoost. A comparison of the results with recent correlations and machine learning methods adopting a compositional approach by implementing tree-based bagging methods: Extra Trees (ETs), Random Forest (RF), and Decision Trees (DTs), is then performed. Statistical and graphical indicators demonstrate that the XGBoost model outperforms the other models in estimating the B parameter across the reservoir pressure region (above and below bubble point pressure); the new method has significantly improved the accuracy of the compositional method, as the average absolute relative deviation is now only 0.2598%, which is four times lower than the previous (compositional approach) error rate. The findings of this study can be used for precise prediction of the volumetric properties of hydrocarbon reservoir fluids without the need for conducting routine laboratory analyses by only employing wellhead data.

摘要

由于原油地层体积系数(B)对于石油工程中的各种计算至关重要,例如估算原地原油储量、多孔储层介质中的流体流动以及油井产量,因此该参数可通过包括实验测试、关联式、状态方程和人工智能模型在内的传统方法进行预测。作为传统黑油方法的替代方法,组分油方法最近已被用于精确预测原油地层体积系数。尽管油的组成对于估算该参数至关重要,但通过实验室分析获取它既耗时又成本高昂。因此,油中溶解气的输入参数已被用作油中轻组分含量的代表,它与压力、美国石油学会(API)重度和储层温度等其他参数一样,是决定油体积变化的一个有效因素。本研究利用梯度提升决策树(GBDT)技术创建了机器学习模型,其中还纳入了极端梯度提升(XGBoost)、梯度提升(GradientBoosting)和CatBoost。然后,将结果与最近采用基于树的装袋方法(Extra Trees(ETs)、随机森林(RF)和决策树(DTs))的关联式和采用组分方法的机器学习方法进行比较。统计和图形指标表明,在整个储层压力区域(高于和低于泡点压力)估算B参数时,XGBoost模型优于其他模型;新方法显著提高了组分方法的准确性,因为平均绝对相对偏差现在仅为0.2598%,比之前(组分方法)的错误率低四倍。本研究的结果可用于精确预测烃类储层流体的体积性质,而无需仅通过井口数据进行常规实验室分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e7e/10502101/ddc2891d72d1/41598_2023_42469_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验