Munjal Prateek, Mahrooqi Ahmed Al, Rajan Ronnie, Jeremijenko Andrew, Ahmad Iftikhar, Akhtar Muhammad Imran, Pimentel Marco A F, Khan Shadab
M42, Abu Dhabi, UAE.
Capital Health Screening Centre, Abu Dhabi, UAE.
NPJ Digit Med. 2025 Jul 9;8(1):418. doi: 10.1038/s41746-025-01832-7.
Traditional tuberculosis (TB) screening involves radiologists manually reviewing chest X-rays (CXR), which is time-consuming, error-prone, and limited by workforce shortages. Our AI model, AIRIS-TB (AI Radiology In Screening TB), aims to address these challenges by automating the reporting of all X-rays without any findings. AIRIS-TB was evaluated on over one million CXRs, achieving an AUC of 98.51% and overall false negative rate (FNR) of 1.57%, outperforming radiologists (1.85%) while maintaining a 0% TB-FNR. By selectively deferring only cases with findings to radiologists, the model has the potential to automate up to 80% of routine CXR reporting. Subgroup analysis revealed insignificant performance disparities across age, sex, HIV status, and region of origin, with sputum tests for suspected TB showing a strong correlation with model predictions. This large-scale validation demonstrates AIRIS-TB's safety and efficiency in high-volume TB screening programs, reducing radiologist workload without compromising diagnostic accuracy.
传统的结核病(TB)筛查需要放射科医生手动查看胸部X光片(CXR),这既耗时、易出错,又受到劳动力短缺的限制。我们的人工智能模型AIRIS-TB(结核病筛查中的人工智能放射学)旨在通过自动报告所有无异常的X光片来应对这些挑战。AIRIS-TB在超过一百万张胸部X光片上进行了评估,曲线下面积(AUC)达到98.51%,总体假阴性率(FNR)为1.57%,超过了放射科医生(1.85%),同时保持结核病假阴性率为0%。通过仅将有异常的病例选择性地交由放射科医生处理,该模型有可能实现高达80%的常规胸部X光片报告自动化。亚组分析显示,在年龄、性别、艾滋病毒感染状况和原籍地区方面,性能差异不显著,疑似结核病的痰检与模型预测显示出强烈的相关性。这项大规模验证证明了AIRIS-TB在高容量结核病筛查项目中的安全性和效率,在不影响诊断准确性前提下减少了放射科医生的工作量。