Suppr超能文献

基因组选择的抗真菌芽孢杆菌菌株提高小麦产量和烘焙品质。

Genomically-selected antifungal Bacillaceae strains improve wheat yield and baking quality.

作者信息

Casal Alejo, Gizzi Fernán Oscar, Figueroa Sol Agostina, Petitti Tomás Denis, Ferragutti Facundo, Gaido Jimena, Manno Mariano Alberto Torres, Céccoli Gabriel, Paoletti Luciana, Dunlap Christopher, Daurelio Lucas Damián, Espariz Martín

机构信息

Laboratorio de Biotecnología e Inocuidad de los Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas (FCByF), Universidad Nacional de Rosario (UNR), Municipalidad de Granadero Baigorria, Sede Suipacha 590, Rosario, Argentina.

Laboratorio de Genética y Fisiología de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Sede FCByF - UNR, Rosario, Santa Fe, Argentina.

出版信息

Appl Microbiol Biotechnol. 2025 Jul 10;109(1):164. doi: 10.1007/s00253-025-13544-9.

Abstract

Soil microbial diversity degradation through agricultural intensification necessitates sustainable alternatives. This study employed genomic and phenotypic approaches to characterize wheat rhizosphere-associated Bacillaceae for agricultural applications. Initial screening of 576 sporulating isolates for antifungal activity against Fusarium graminearum, followed by RAPD analysis, identified 39 distinct genetic profiles, out of which 15 were classified in Bacillus amyloliquefaciens or Priestia megaterium groups by 16S RNA sequence. Whole-genome sequencing of selected strains enabled precise taxonomic classification and comprehensive trait prediction using in silico tools. Genomic mining revealed strain-specific distributions of beneficial traits, including antimicrobial compound production pathways and plant growth-promoting characteristics. Phenotypic validation confirmed key predicted traits while uncovering additional functionalities not detected in silico. Integration of kernel bioassays, pot experiments, and field trials identified Bacillus velezensis ZAV-W70 and P. megaterium ZAV-W64 as promising biofertilizer and biocontrol candidates, demonstrating enhanced yield without fungicides and improved bread-making quality, respectively. These findings highlight the value of combining genomic analysis with traditional screening methods for developing effective agricultural biologicals, contributing to sustainable wheat production practices. KEY POINTS: • Rhizosphere Bacillaceae strains show dual plant growth promotion and biocontrol • B. velezensis ZAV-W70 and P. megaterium ZAV-W64 increase wheat yield • ZAV-W64 increases bread-making quality including total gluten and alveograph W.

摘要

农业集约化导致土壤微生物多样性下降,因此需要可持续的替代方案。本研究采用基因组和表型方法对小麦根际芽孢杆菌科进行表征,以用于农业应用。首先对576株产孢分离株进行针对禾谷镰刀菌的抗真菌活性筛选,随后进行随机扩增多态性DNA(RAPD)分析,鉴定出39个不同的遗传图谱,其中15个通过16S RNA序列被归类为解淀粉芽孢杆菌或巨大Priestia菌属。对选定菌株进行全基因组测序,利用计算机工具实现了精确的分类学分类和全面的性状预测。基因组挖掘揭示了有益性状的菌株特异性分布,包括抗菌化合物生产途径和促进植物生长的特性。表型验证证实了关键预测性状,同时发现了计算机分析未检测到的其他功能。通过核心生物测定、盆栽试验和田间试验相结合,确定贝莱斯芽孢杆菌ZAV-W70和巨大Priestia菌ZAV-W64分别是有前景的生物肥料和生物防治候选菌株,分别显示出在不使用杀菌剂的情况下提高产量和改善面包制作品质。这些发现突出了将基因组分析与传统筛选方法相结合用于开发有效的农业生物制剂的价值,有助于可持续小麦生产实践。要点:•根际芽孢杆菌科菌株具有促进植物生长和生物防治双重作用•贝莱斯芽孢杆菌ZAV-W70和巨大Priestia菌ZAV-W64提高小麦产量•ZAV-W64提高面包制作品质,包括总面筋和面团流变仪W值

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验