Mannan Ayman Bin Abdul, Bukharid Momtaz Zamila, Hossain M Anwar, Sultana Munawar
Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.
BMC Genomics. 2025 Jul 9;26(1):650. doi: 10.1186/s12864-025-11811-7.
Microbacterium paraoxydans is known for its potential in bioremediation and biotechnological applications, including promoting plant growth. However, research on this bacterium in Bangladesh has been limited and until now no reported complete genome of M. paraoxydans is available from this country. In this study, we have reported the complete genome of M. paraoxydans BHS25, the first case in Bangladesh, isolated from arsenic-contaminated soil in Bogura.
Complete genome analysis revealed that BHS25 was closely related to Microbacterium paraoxydans LTR1 from Russia, which itself showed similarity to a strain found at the International Space Station, reported to be resistant to extreme conditions. BHS25 possessed a genome of 3.49 Mb with a GC content of 70.12%, comprising 3,415 protein-coding genes, 47 tRNA genes, and 5 rRNA genes. It carried various heavy metal resistance genes and gene islands, such as arsC, arsB, and acr3 for arsenic detoxification/transformation, as well as czcD and copB for resistance to cadmium, zinc, cobalt, and copper. The arrangement of the arsenic resistance genes showed similarity to that in other reported Microbacterium strains, although pangenome and ANI analyses indicated considerable genetic diversity within the species. Additionally, the presence of vanY within the vanB cluster suggested potential vancomycin resistance. Metabolic pathway analyses revealed that BHS25 was well adapted, with different carbohydrate and amino acid metabolism, secondary metabolite biosynthesis, and xenobiotic degradation capabilities. The unique notable anabolic pathways were streptomycin biosynthesis with 14 associated genes, novobiocin biosynthesis and tropane, piperidine, and pyridine alkaloid biosynthesis (8 genes each), as well as monobactam biosynthesis, prodigiosin biosynthesis, and penicillin and cephalosporin biosynthesis, suggesting a potential for production of antimicrobials. Furthermore, it showed an auxin biosynthesis pathway for plant growth, further demonstrating its biotechnological potential.
This research identified Microbacterium paraoxydans BHS25 as a promising candidate for bioremediation and sustainable environmental management, offering insights into microbial adaptation to challenging environments and potential solutions for pollution encounters.
副氧化微杆菌因其在生物修复和生物技术应用方面的潜力而闻名,包括促进植物生长。然而,孟加拉国对这种细菌的研究有限,到目前为止,该国尚未报道过副氧化微杆菌的完整基因组。在本研究中,我们报道了从博古拉受砷污染土壤中分离出的副氧化微杆菌BHS25的完整基因组,这是孟加拉国的首例。
完整基因组分析表明,BHS25与来自俄罗斯的副氧化微杆菌LTR1密切相关,而LTR1本身与在国际空间站发现的一个菌株相似,据报道该菌株对极端条件具有抗性。BHS25拥有一个3.49 Mb的基因组,GC含量为70.12%,包含3415个蛋白质编码基因、47个tRNA基因和5个rRNA基因。它携带了各种重金属抗性基因和基因岛,如用于砷解毒/转化的arsC、arsB和acr3,以及用于抵抗镉、锌、钴和铜的czcD和copB。尽管泛基因组和ANI分析表明该物种内存在相当大的遗传多样性,但砷抗性基因的排列与其他已报道的微杆菌菌株相似。此外,vanB簇中vanY的存在表明可能具有万古霉素抗性。代谢途径分析表明,BHS25具有良好的适应性,具有不同的碳水化合物和氨基酸代谢、次生代谢物生物合成和外源化合物降解能力。独特的显著合成代谢途径包括具有14个相关基因的链霉素生物合成、新生霉素生物合成以及托烷、哌啶和吡啶生物碱生物合成(各8个基因),以及单环β-内酰胺生物合成、灵菌红素生物合成以及青霉素和头孢菌素生物合成,表明具有生产抗菌剂的潜力。此外,它显示出一条用于植物生长的生长素生物合成途径,进一步证明了其生物技术潜力。
本研究确定副氧化微杆菌BHS25是生物修复和可持续环境管理的一个有前途的候选菌株,为微生物对具有挑战性环境的适应性以及应对污染的潜在解决方案提供了见解。