Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Malopolska, Poland.
Sano Centre for Computational Personalized Medicine, Czarnowiejska 36, Krakow, 30-054, Malopolskie, Poland.
Microbiome. 2024 Oct 4;12(1):190. doi: 10.1186/s40168-024-01916-8.
The extreme environment of the International Space Station (ISS) puts selective pressure on microorganisms unintentionally introduced during its 20+ years of service as a low-orbit science platform and human habitat. Such pressure leads to the development of new features not found in the Earth-bound relatives, which enable them to adapt to unfavorable conditions.
In this study, we generated the functional annotation of the genomes of five newly identified species of Gram-positive bacteria, four of which are non-spore-forming and one spore-forming, all isolated from the ISS. Using a deep-learning based tool-deepFRI-we were able to functionally annotate close to 100% of protein-coding genes in all studied species, overcoming other annotation tools. Our comparative genomic analysis highlights common characteristics across all five species and specific genetic traits that appear unique to these ISS microorganisms. Proteome analysis mirrored these genomic patterns, revealing similar traits. The collective annotations suggest adaptations to life in space, including the management of hypoosmotic stress related to microgravity via mechanosensitive channel proteins, increased DNA repair activity to counteract heightened radiation exposure, and the presence of mobile genetic elements enhancing metabolism. In addition, our findings suggest the evolution of certain genetic traits indicative of potential pathogenic capabilities, such as small molecule and peptide synthesis and ATP-dependent transporters. These traits, exclusive to the ISS microorganisms, further substantiate previous reports explaining why microbes exposed to space conditions demonstrate enhanced antibiotic resistance and pathogenicity.
Our findings indicate that the microorganisms isolated from ISS we studied have adapted to life in space. Evidence such as mechanosensitive channel proteins, increased DNA repair activity, as well as metallopeptidases and novel S-layer oxidoreductases suggest a convergent adaptation among these diverse microorganisms, potentially complementing one another within the context of the microbiome. The common genes that facilitate adaptation to the ISS environment may enable bioproduction of essential biomolecules need during future space missions, or serve as potential drug targets, if these microorganisms pose health risks. Video Abstract.
国际空间站(ISS)的极端环境对其作为低轨道科学平台和人类栖息地的 20 多年服务期间无意中引入的微生物施加了选择性压力。这种压力导致了新特征的发展,而这些新特征在地球上的亲缘关系中是找不到的,使它们能够适应不利的条件。
在这项研究中,我们对从 ISS 中分离出来的五种新鉴定的革兰氏阳性菌的基因组进行了功能注释,其中四种是非孢子形成菌,一种是孢子形成菌。我们使用基于深度学习的工具-deepFRI-能够对所有研究物种中近 100%的编码蛋白基因进行功能注释,克服了其他注释工具的局限性。我们的比较基因组分析突出了所有五个物种的共同特征和这些 ISS 微生物特有的特定遗传特征。蛋白质组分析反映了这些基因组模式,揭示了相似的特征。集体注释表明这些微生物适应了太空生活,包括通过机械敏感通道蛋白来管理与微重力相关的低渗应激,增加 DNA 修复活性以抵消更高的辐射暴露,以及存在增强代谢的可移动遗传元件。此外,我们的研究结果表明,某些遗传特征的进化表明存在潜在的致病能力,例如小分子和肽的合成以及 ATP 依赖性转运蛋白。这些仅存在于 ISS 微生物中的特征进一步证实了之前的报告,即暴露于太空条件的微生物表现出增强的抗生素抗性和致病性的原因。
我们的研究结果表明,从 ISS 中分离出的微生物已经适应了太空生活。证据表明,机械敏感通道蛋白、增加的 DNA 修复活性以及金属肽酶和新型 S-层氧化还原酶表明,这些不同的微生物之间存在趋同适应,可能在微生物组的背景下相互补充。促进适应 ISS 环境的共同基因可能使在未来的太空任务中生产必需的生物分子成为可能,或者如果这些微生物对健康构成威胁,则可能成为潜在的药物靶点。