Suppr超能文献

整合单细胞和批量RNA测序以鉴定和验证与急性髓系白血病中T细胞衰老相关的预后基因。

Integrated single-cell and bulk RNA dequencing to identify and validate prognostic genes related to T Cell senescence in acute myeloid leukemia.

作者信息

Sha Mengyao, Chen Jun, Hou Haifeng, Dou Huaihui, Zhang Yan

机构信息

Department of Laboratory Medicine, Suzhou Yongding Hospital, Suzhou, China.

Department of Hematology, Suzhou Yongding Hospital, Suzhou, China.

出版信息

Front Bioinform. 2025 Jun 25;5:1606284. doi: 10.3389/fbinf.2025.1606284. eCollection 2025.

Abstract

BACKGROUND

T-cell suppression in patients with Acute myeloid leukemia (AML) limits tumor cell clearance. This study aimed to explore the role of T-cell senescence-related genes in AML progression using single-cell RNA sequencing (scRNA-seq), bulk RNA sequencing (RNA-seq), and survival data of patients with AML in the TCGA database.

METHODS

The Uniform Manifold Approximation and Projection (UMAP) algorithm was used to identify different cell clusters in the GSE116256, and differentially expressed genes (DEGs) in T-cells were identified using the FindAllMarkers analysis. GSE114868 was used to identify DEGs in AML and control samples. Both were crossed with the CellAge database to identify aging-related genes. Univariate and multivariate regression analyses were performed to screen prognostic genes using the AML Cohort in The Cancer Genome Atlas (TCGA) Database (TCGA-LAML), and risk models were constructed to identify high-risk and low-risk patients. Line graphs showing the survival of patients with AML were created based on the independent prognostic factors, and Receiver Operating Characteristic Curve (ROC) curves were used to calculate the predictive accuracy of the line graph. GSE71014 was used to validate the prognostic ability of the risk score model. Tumor immune infiltration analysis was used to compare differences in tumor immune microenvironments between high- and low-risk AML groups. Finally, the expression levels of prognostic genes were verified using polymerase chain reaction (RT-qPCR).

RESULTS

31 AMLDEGs associated with aging identified 4 prognostic genes (CALR, CDK6, HOXA9, and PARP1) by univariate, multivariate, and stepwise regression analyses with risk modeling The ROC curves suggested that the line graph based on the independent prognostic factors accurately predicted the 1-, 3-, and 5-year survival of patients with AML. Tumor immune infiltration analyses suggested significant differences in the tumor immune microenvironment between low- and high-risk groups. Prognostic genes showed strong binding activity to target drugs (IGF1R and ABT737). RT-qPCR verified that prognostic gene expression was consistent with the data prediction results.

CONCLUSION

CALR, CDK6, HOXA9, and PARP1 predicted disease progression and prognosis in patients with AML. Based on these, we developed and validated a new AML risk model with great potential for predicting patients' prognosis and survival.

摘要

背景

急性髓系白血病(AML)患者的T细胞抑制作用限制了肿瘤细胞的清除。本研究旨在利用单细胞RNA测序(scRNA-seq)、批量RNA测序(RNA-seq)以及TCGA数据库中AML患者的生存数据,探讨T细胞衰老相关基因在AML进展中的作用。

方法

使用统一流形近似和投影(UMAP)算法在GSE116256中识别不同的细胞簇,并通过FindAllMarkers分析识别T细胞中的差异表达基因(DEG)。利用GSE114868识别AML和对照样本中的DEG。将两者与CellAge数据库交叉,以识别衰老相关基因。使用癌症基因组图谱(TCGA)数据库(TCGA-LAML)中的AML队列进行单变量和多变量回归分析,以筛选预后基因,并构建风险模型以识别高危和低危患者。根据独立预后因素绘制AML患者生存情况的线图,并使用受试者工作特征曲线(ROC)计算线图的预测准确性。利用GSE71014验证风险评分模型的预后能力。采用肿瘤免疫浸润分析比较高危和低危AML组之间肿瘤免疫微环境的差异。最后,使用聚合酶链反应(RT-qPCR)验证预后基因的表达水平。

结果

通过单变量、多变量和逐步回归分析以及风险建模确定的31个与衰老相关的AML DEG中,有4个预后基因(CALR、CDK6、HOXA9和PARP1)。ROC曲线表明,基于独立预后因素的线图能够准确预测AML患者1年、3年和5年的生存率。肿瘤免疫浸润分析表明,低危和高危组之间的肿瘤免疫微环境存在显著差异。预后基因对靶向药物(IGF1R和ABT737)表现出较强的结合活性。RT-qPCR验证了预后基因表达与数据预测结果一致。

结论

CALR、CDK6、HOXA9和PARP1可预测AML患者的疾病进展和预后。基于此,我们开发并验证了一种新的AML风险模型,该模型在预测患者预后和生存方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9943/12238043/4ea61c88f366/fbinf-05-1606284-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验